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ABSTRACT
Background: Organizations are experiencing an increasing de-
mand for security-by-design activities (e.g., STRIDE analyses) which
require a high manual effort. This situation is worsened by the
current lack of diverse (and sufficient) security workforce and in-
conclusive results from past studies. To date, the deciding human
factors (e.g., diversity dimensions) that play a role in threat analysis
have not been sufficiently explored.
Objective: To address this issue, we plan to conduct a series of
exploratory controlled experiments. The main objective is to empir-
ically measure the human-aspects that play a role in threat analysis
alongside the more well-known measures of analysis performance.
Method: We design the experiments as a differentiated replication
of past experiments with STRIDE. The replication design is aimed
at capturing some similar measures (e.g., of outcome quality) and
additional measures (e.g., diversity dimensions). We plan to conduct
the experiments in an academic setting.
Limitations: Obtaining a balanced population (e.g., wrt gender)
in advanced computer science courses is not realistic. The experi-
ments we plan to conduct with MSc level students will suffer this
limitation. We plan to (at least) measure the self-reported team
dynamics, though we can not control its effects on the analysis
outcomes.
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1 INTRODUCTION
Security-by-design techniques [8, 29] have been used to prevent
costly security fixes to software in later stages of the development
life-cycle by analyzing security already during the design phase.
Practitioners use threat analysis [35] to look for potential secu-
rity threats in their product’s software architecture. For instance,
STRIDE [32] is a popular technique developed by Microsoft.
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There is an increasing need to perform such architectural se-
curity analyses (e.g., latest BSIMM study reports an increased in-
vestment by more than 65% [10]) as the threat landscape evolves.
However, threat analysis requires a high manual effort [30], de-
mands the involvement of security and domain experts [6], and has
been proven time and again difficult to fully automate [38].

Threat analysis practices are set back by a globally recorded
shortage of the security workforce [4, 7]. In addition, the current
security workforce is not diverse (e.g., with respect to gender) which
may be viewed as an opportunity for a change.

Risk decisions (which are core to threat analysis) are made in face
of uncertainty [3], thus there is space for subjective (and possibly
biased) judgement [5, 14]. Empirical evidence of threat analysis
performance indicators is a crucial piece of the puzzle to improve the
situation. But, past empirical studies were either inconclusive about
some performance indicators [37] or have focused on measuring
performance indicators irrespective of the human factors [30, 36,
39]. Yet measuring such human factors is pivotal to understanding
how to close the security workforce gap in the future.

To address these issues, we plan to conduct a series of exploratory
controlled experiments with the aim of empirically measuring the
human-aspects that play a role in threat analysis. In particular, we
design a differentiated replication [20], where we capture some sim-
ilar measures used in previous experiments [37] but also different
measures (e.g., participant gender, nationality, type of outcomes,
etc).

2 RELATEDWORK
We positioned our contributions with respect to existing literature
on empirical studies of STRIDE and related replication studies.
Empirical studies of threat analysis. In addition to the replicated
study [37], several works have investigated STRIDE empirically.
Scandariato et al. [30] performed a descriptive analysis measuring
the productivity, precision, and recall of STRIDE in an academic
setting. Their study reports similar values for a version of STRIDE-
per-element, however the conditions of the descriptive study were
different compared to our controlled experiment, therefore the
results can not be directly compared.

Two studies [2, 6] conducted case studies investigating the chal-
lenges of STRIDE. Bernsmed et al. [2] conducted semi-structured
interviews (with transcription code analysis) with agile organiza-
tions and recorded the perceived challenges. The authors report
that practitioners see value in performing STRIDE despite the high
manual effort it requires. Other discovered challenges were related
to the lack of expertise by developers conducting the analysis, and
uncompatibility of systematic approaches with the Agile workflow.

Stevens et al. [33] conducted a qualitative case study to investi-
gate the efficacy the Center of Gravity (CoG) technique in an indus-
trial setting. The CoG, originally conceived as a military strategy,
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is a risk-first threat analysis technique but has not been extensively
used to analyze software security. The authors designed surveys
and classroom sessions and involved 25 practitioners in the study.
Similar to other studies conducted with experts, they report a very
high accuracy of the participant results.
Replications. We frame our plan as a series of experimental repli-
cations. Generally, software engineering replication studies apply
similar experimental procedures as the original study, on a differ-
ent participation pool. This process is aimed at generating new
data [28] (as opposed to re-analyzing the same data in reproduction
studies). We briefly mention some related replication studies.

Labunets et al [19] conducted a controlled experiment that was
replicated in [18] using student participants to compare two risk
assessment methods, a visual and a textual method. The first study
found that the visual method was more effective for identifying
threats than the textual one. In contrast, the replicated experiment
showed that the two techniques were (statistically) equivalent in
terms of the quality of identified threats and security controls.

Several studies have empirically compared [16, 17, 22] and con-
ducted replications [15, 23, 25] requirement engineering techniques
(e.g., requirements elicitation). For brevity, we direct the interested
reader a comprehensive review by Ambreen et al. [1].

3 RESEARCH QUESTIONS
Due to the academic setting we limit this study on observing gender,
background, and nationality diversity dimensions (and exclude
seniority). The main goal of this study is to measure the existence
(or absence) of diversity effects on the actual and perceived analysis
outcomes. Accordingly, we developed two research questions and
hypotheses about each measure.
RQ1. What is the effect of gender, background, and nationality on
the actual threat analysis outcomes?

To investigate RQ1, we pose hypotheses about the equivalence
of the sample means for the analysis outcomes.
𝐻11 : 𝐶𝑜𝑚𝑝.𝑆𝑐𝑖𝐹 = 𝐶𝑜𝑚𝑝.𝑆𝑐𝑖𝑀

Regarding gender, we expect that the outcomes reported by women
are equivalent to the outcomes reported by men. Studies of risk
perception suggest that women perceive certain risks differently
compared to men. Though we do not foresee strong differences, we
might find some effects when it comes to risk priority.
𝐻12 : 𝐶𝑜𝑚𝑝.𝑆𝑐𝑖1 = 𝐶𝑜𝑚𝑝.𝑆𝑐𝑖2

Regarding education, we expect that the students of various spe-
cialization tracks report equivalent outcomes for the same system
under analysis.
𝐻13 : 𝐶𝑜𝑚𝑝.𝑆𝑐𝑖𝑁𝑎 = 𝐶𝑜𝑚𝑝.𝑆𝑐𝑖𝑁𝑏

We expect that the students of various race and nationality report
statistically equivalent outcomes.
RQ2. What is the effect of gender, background, and nationality on
the perceived threat analysis outcomes?

To investigate RQ2, we pose hypotheses about the equivalence
of the sample means for the perceived analysis outcomes.
𝐻21 : 𝑃𝑒𝑟𝑐 (𝐶𝑜𝑚𝑝.𝑆𝑐𝑖𝐹 ) < 𝑃𝑒𝑟𝑐 (𝐶𝑜𝑚𝑝.𝑆𝑐𝑖𝑀 )
Due to low confidence levels of female computer science students,
we expect that the perceived quality of outcomes reported by

women is lesser compared to the perceived quality of outcomes
reported by men (regardless of the actual outcomes by both groups).
𝐻22 : 𝑃𝑒𝑟𝑐 (𝐶𝑜𝑚𝑝.𝑆𝑐𝑖1) = 𝑃𝑒𝑟𝑐 (𝐶𝑜𝑚𝑝.𝑆𝑐𝑖2)
Regarding education, we expect that overall the students of var-
ious specialization tracks do not differ in their perceived quality
of the outcomes they produced. We may find higher confidence
levels of perceived quality for students that are following a security
specialization track.
𝐻23 : 𝑃𝑒𝑟𝑐 (𝐶𝑜𝑚𝑝.𝑆𝑐𝑖𝑁𝑎) = 𝑃𝑒𝑟𝑐 (𝐶𝑜𝑚𝑝.𝑆𝑐𝑖𝑁𝑏 )
We expect that the students of various nationality do not differ in
their perceived quality of the outcomes they produced.

4 REPLICATION PROTOCOL
4.1 Variables
Table 1 shows the variables of the study.

4.1.1 Independent. Gender is an individual’s own gender identity,
which is typically, man and woman, but can also be non-binary.
Rodriguez et al. [24] found evidence of bias against women in some
software engineering communities, and sometimes negative percep-
tions about women working in teams. Thus, this is an interesting
dimension to further investigate in the context of security.
Education is an individuals’ achieved level and topic of specializa-
tion (e.g., computer security vs AI) of academic studies. Risk-based
decisions have to be made in organizations by the managerial lay-
ers, who typically have a good understanding of the product, but
do not necessarily posses the technical skills of security experts
or engineers. Therefore, it is interesting to investigate this dimen-
sion and include participants from a different domain (e.g., with
background in communication sciences). Education turned out to
be a non-significant variable in the study of the impact of com-
mercial Antivirus on people’s awareness of security incidents [13].
However, it is not clear whether this dimension has an impact in
performing a RA task.
Nationality is the country of origin, which is often coupled with
the culture and language that categorizes social groups. Race is a so-
cial construct linked with individual’s physical characteristics such
as skin color and is used to categorize populations. Determining
the effect of nationality bias in security practices is to date an open
question. Thomas et al. [34] conducted semi-structured interviews
with 14 Black women in computing and report that Black women
experienced isolation (though it is not clear whether due to gender
or race or nationality). But, few studies have focused on nationality
diversity in the software engineering discipline [24].

4.1.2 Dependent. Since the quality of analysis lacks a formalised
definition (e.g., often natural language is used to describe attack
scenarios and informal notations are used for modeling [35]), we
will use measures that can be easily reproduced. Namely, we can
observe how diversity dimensions effect the type of analysis out-
comes. Table 1 (dependant variables) shows various outcomes types
that we observe.
Threats.We use the STRIDE threat categories to distinguish differ-
ent type of threats. Analyses conducted by experts tend to be more
balanced in terms of their analysis of different threat categories,
while novices tend to report more tampering, denial of service and
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information disclosure threats [36, 37]. We are interested to observe
whether category distribution patterns emerge for other diversity
dimensions.
Assumptions. Assumptions are statements about the domain that
may or may not be true. Assumptions are often implicit and dy-
namic in nature (i.e., they can be invalidated and modified as the
project evolves). Van Landuyt and Joosen [39] find that the majority
of assumptions (created by students during STRIDE) were used to
either justify an existence of threats or are used to eliminate threats.
In [39] a substantial subset (78%) of the assumptions was in direct
reference to security-related concepts (i.e., security assumptions),
however also domain assumptions (statements about component
functionalities) were made. Thus, we are interested to investigate
the effect of diversity dimensions on the type of assumptions.
Attack surface. Security analysts often rely on defining the attack
surface and the required attacker profile to exploit it to determine
the feasibility of an attack scenario. Determining feasibility is sub-
jective, domain-specific and not always obvious, therefore we in-
clude it in the dependent variables.
Risk priority. Since the number of identified threats explodes in
realistic projects, practitioners must choose which threats are most
urgent to mitigate. Thus they prioritize them based on estimations
of risk. We refer to risk as a product of threat probability and impact.
How individuals assess risk priorities may be related to their risk
perception which is already well understood [11].
Mitigations.Mitigations of a security risk can be preventative (e.g.,
implementation of two-factor authentication), detective/reactive
(e.g., using intrusion detection and access revocation techniques)
and corrective (such as maintaining audit trails or restoring from
a secure state). Multiple strategies can be adopted to counter a
security threat, and the final choice may depend on domain-related
factors, as the cost of implementing the mitigation has to be reason-
able. A category of experts (e.g., man vs woman) may underestimate
the ease with which a mitigation is actually implemented, as ob-
served in [40]. Thus, we are interested to observe how diversity
dimensions effect the type of mitigations that are identified during
the analysis.

4.2 Material
Training. In the first part of the training the participants will be
introduced to some key security topics (such as CIAA triad, secu-
rity threats, attack surface and vulnerabilities, security controls
and risk mitigations). The second part of the training will prepare
the students to actually perform a threat analysis using one of the
technique variants. The third part of the training will introduce
the participants to the case study which will be the object of their
analysis.
Case study documentation. We will use the same case study as
in the original study. The home monitoring system (HomeSys) is
an automated surveillance system designed for residential places.
Its main objective is to enable the home-owner to remotely monitor
their property. A detailed documentation of the case (requirements,
architectural design, etc) will be made available to the participants.
Ground truth analysis.We will use one ’golden standard’ data
flow diagram and its’ corresponding ground truth STRIDE analy-
sis of the HomeSys case study from [37]. Since we do not aim to

measure the quality of the diagrams created, and the DFD building
is less time consuming compared to threat identification, we will
provide a model to the participants. This will significantly simply
the comparison of the identified security threats. Similarly, we will
provide the ground truth analysis to the participants that will be
prioritizing threats and identifying security mitigations.

4.3 Task
The participants will be asked to individually fill-in a survey. The
survey consists of three parts. First, a few questions about the
students gender, background, nationality. Half of the participants
will be asked to perform a STRIDE analysis (i.e., identify security
threats). In contrast to previous studies, our participants will be
given the same graphical model of HomeSys to analyze and they will
analyze it using the same STRIDE technique. The other half of the
participants will be asked to prioritize a list of security threats and
identify security mitigations to high-priority threats. In contrast to
previous studies, our participants will be given the graphical model
and the list of security threats. To guide the threat identification the
participants will use the documentation of STRIDE. Similar to the
past studies, we will hand out a threat template csv to standardize
the format of the outcomes reported. The participants will submit
the files using the same survey. Finally, they will be asked a few
questions regarding their perception of the task. Time taken to
complete the task was captured using an online survey tool.

4.4 Participants
Our population is computer science students, with some differences
in the elective courses and program choices (e.g., we plan to in-
clude students from various master programs, such as IA, computer
Security, and Software Engineering). All participants are students
enrolled in a course taught by the experimenters. At the beginning
of the course we plan to hand out an entry survey to measure par-
ticipants’ background and areas of expertise relevant to the study.
We expect most to be new to secure design techniques (e.g STRIDE,
threat modeling, Data Flow Diagrams, misuse cases, attack trees
etc). In addition, we expect the participants are unfamiliar with
architectural modeling techniques (e.g sequence, component and
deployment diagrams).

4.5 Execution plan
Work division. The participants will be randomly divided into two
groups (A and B). Group A will be tasked with analysing a provided
data flow diagram of the HomeSys case study using STRIDE. Group
B will be tasked with prioritizing a provided list of security threats
and identifying security mitigations for high-priority threats. These
are not treatment groups. Rather, the groups are formed only to
divide the work to avoid overloading the participants performing
an overly complex task individually.
Training. The participants will undergo an obligatory training
lectures (about 3 hours) covering the topics mentioned above.
Hand-outs. After the training, participants will be given digital
copies of all the support material (inc. lecture slides, case documen-
tation, technique documentation, etc).
Physical labs.The experimentwill be conducted during a four hour
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Name Description Scale Operationalization

Independent variables (design)

Gender obtained from the gender of participants nominal multiple choice
Background the program specialization and extra curriculum activi-

ties
nominal multiple choice

Nationality obtained from the nationality of participants nominal multiple choice

Dependent variables

**Different measures compared to existing literature**
Type of identified threats distribution of categories of threats (spoofing, tampering,

information disclosure, denial of service, elevation of
privilege) that have been identified by the participants

nominal see Section 4.2

Type of assumptions distribution type of assumptions (domain, security) that
have been reported by the participants

nominal see Section 4.2

Type of attacks surface distribution attack surfaces (physical, close-proximity,
remote) of the identified threats

nominal see Section 4.2

Risk priorities distribution of risk priorities (high, medium, low) as-
signed to identified threats

nominal see Section 4.2

Type of mitigations distribution of type of identified mitigations (preventa-
tive, detective/reactive, corrective)

nominal see Section 4.2

Treated/Measured variables

Time spent on task time (in hours) each team took to complete the task using
the prescribed technique

ordinal automatically
measured by the
submission tool

Perceived precision (PP) self-reported ratio between the number of correctly iden-
tified threats and all threats identified

ordinal 5-point Likert scale

Perceived recall (PR) self-reported ratio between the number of correctly iden-
tified threats and all existing threats identified

ordinal 5-point Likert scale

Perceived usefulness (PU) self-reported usefulness of the prescribed technique ordinal 5-point Likert scale
Experience with security and modeling self-reported experience in number of years or previ-

ously completed courses
ordinal 5-point Likert scale

Experience with STRIDE self-reported experience in number of years or previ-
ously completed courses

ordinal 5-point Likert scale

Experience with domain of application self-reported experience in number of years or previ-
ously completed courses

ordinal 5-point Likert scale

**Different measures compared to existing literature**
Perceived cognitive load the reported cognitive load (complexity) of the task using

the prescribed technique
ordinal 5-point Likert scale

Perceived team dynamics the reported quality level of group work ordinal 5-point Likert scale
Table 1: Variables of the differentiated replication experiments

physical lab. The teams will be separated into different classrooms
depending on their treatment group (to avoid spillover effects).
Each classroom will be supervised by either a teaching assistant or
the experimenters. Only questions about the experiment protocol
will be answered.
Reports. The data will be collected through an online survey tool.

4.6 Analysis plan
Data cleaning. We will perform a preliminary check of the col-
lected data. This will include removing submissions for which we
did not get explicit consent by the participant. Second, we will
remove clearly insincere submission attempts (if any).

TOST analysis of equivalence.We will use both difference and
equivalence statistical tests. As some of our data are ordinal and
comes from independent samples, we will perform Mann-Whitney
test. For the equivalence test we will use TOST, which was initially
proposed by [31] and is widely used in pharmacological and food
sciences to answer the question whether two treatments are equiv-
alent within a particular range 𝛿 [9, 21]. Wherever possible (e.g.,
for Likert-scale questions) we will define the delta empirically. For
instance by pooled variance 𝜎𝑝 across several samples reported in
the literature on security risk analysis (e.g., in a four year interval)
on variables ranging over a 5-item Likert scale for demographic
statistics as to account for natural variability of the data.
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Validity threats. There is typically around 20% (or less) female
students enrolled in computer science programs. We are aware of
the validity threats caused by an unbalanced population sample,
which is omnipresent in all gender diversity studies in STEM disci-
plines [24]. To partially mitigate this threat, we will rally female
computer scientist students towards participation through local
steminist groups and similar community organized channels.

Since we do not include practitioners in this study, we can not
observe the full complexity of the diversity effects (e.g., including
seniority) that are actually present in organizations where threat
analysis is routinely performed. Still, studies have shown [12, 26, 27]
that the differences between the performance of professionals and
graduate students are often limited.

We considered the threat of overloading the participants with a
complex task. We mitigate this threat by splitting the participants
into two groups, so individual participants get to either only focus
on finding threats or focus on mitigating risks.
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