Software and Systems Modeling
https://doi.org/10.1007/s10270-022-00991-5

REGULAR PAPER

f')

Check for
updates

Checking security compliance between models and code

Katja Tuma' - Sven Peldszus? - Daniel Striiber>* . Riccardo Scandariato® - Jan Jiirjens®

7

Received: 3 September 2020 / Revised: 8 September 2021 / Accepted: 16 February 2022

© The Author(s) 2022

Abstract

It is challenging to verify that the planned security mechanisms are actually implemented in the software. In the context
of model-based development, the implemented security mechanisms must capture all intended security properties that were
considered in the design models. Assuring this compliance manually is labor intensive and can be error-prone. This work
introduces the first semi-automatic technique for secure data flow compliance checks between design models and code. We
develop heuristic-based automated mappings between a design-level model (SecDFD, provided by humans) and a code-level
representation (Program Model, automatically extracted from the implementation) in order to guide users in discovering
compliance violations, and hence, potential security flaws in the code. These mappings enable an automated, and project-
specific static analysis of the implementation with respect to the desired security properties of the design model. We developed
two types of security compliance checks and evaluated the entire approach on open source Java projects.

Keywords Security-by-design - Security compliance - Data flow diagram (DFD) - Static program analysis

1 Introduction

For decades, organizations have been concerned with the
security of their software throughout the entire development
process. According to the principle of security by design

Communicated by Constance Heitmeyer and Dr Jeff Gray.

>< Katja Tuma
k.tuma@vu.nl

Sven Peldszus
sven.peldszus @rub.de

Daniel Striiber
d.strueber @cs.ru.nl

Riccardo Scandariato
riccardo.scandariato@tuhh.de

Jan Jiirjens

juerjens @uni-koblenz.de

Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
Ruhr University Bochum, Bochum, Germany

Radboud University Nijmegen, Nijmegen, The Netherlands
Chalmers | Gothenburg University, Géteborg, Sweden
Hamburg University of Technology, Hamburg, Germany
University of Koblenz-Landau, Mainz, Germany

Fraunhofer Institute for Software and Systems Engineering
ISST, Dortmund, Germany

Published online: 18 March 2022

[18,34,60], the analysis of system assets vis-a-vis security
threats needs to be carried out already in the design phase
of the development process. In this context, threat analysis
techniques (e.g., STRIDE [62], attack trees [59], CORAS
[40], and threat patterns [1]) aim to identify security threats
to software systems by scrutinizing the architectural design.
But, empirical evidence shows that existing threat analysis
techniques can be labor intensive [61] and lack automation
[66].

Threat analysis is often performed on a graphical represen-
tation of the software architecture called Data Flow Diagram
(DFD) [16,63]. DFD-like models are extensively used in
practice, e.g., in the automotive industry [41], at Microsoft
[62], and some agile organizations [9]. However, the DFD
notation is informal and cannot specify security properties,
which are needed to reason about security threats at the design
level [23]. To support the detection of problematic infor-
mation flows at the design level, previous work extends the
DFD notation with security-relevant information [8,63] and
security semantics [67]. This work uses one such extended
notation, namely the Security Data Flow Diagram, in short,
SecDFD [67] (Sect. 2).

Once a design model has been analyzed and its security
flaws fixed, the results are of limited value if the implementa-
tion does not comply with the security properties described in
the model. Further, design models tend to be useful during the

@ Springer

http://crossmark.crossref.org/dialog/?doi=10.1007/s10270-022-00991-5&domain=pdf

K. Tuma et al.

design phase but often are ignored after the system is imple-
mented. In particular, empirical evidence shows that only
a fraction of open source projects (26% of the investigated
projects in [29]) ever update their UML files at least once.
Thus, there is a disconnect between the architectural design
models (containing important security decisions) and the
implemented system and its defenses. To be useful for secu-
rity compliance analyses, an automated connection between
the design model and its implementation needs to be estab-
lished.

Having this connection could also benefit static code
analysis. Indeed, existing static analysis tools may report vio-
lations that are labeled as false alarms, afterward [28]. All
reported violations have to be manually sieved through, and,
more importantly, the true violations must be distinguished
from the false alarms. This is not a trivial task for static pro-
gram analysis in general, and in particular, it is not trivial for
static security analysis (as observed by an industrial experi-
ment in [7]). Making such distinctions can be improved by
the contextual information, which can be derived from the
(connected) design model.

To address these issues, we propose an approach for secu-
rity compliance analysis between models and code. This
paper is an extended version of our previous conference paper
[52]. Specifically, we previously proposed a user-in-the-loop
approach (Sect. 3) to support compliance checks between
a design-level data flow diagram enriched with security-
relevant information (SecDFD) and an implementation-level
model called Program Model, or PM for short (Sect. 2.2). In
this work, we contribute with the following extensions:

(i) Two types of security compliance checks using static
code analysis (Sect. 4.1).

(ii)) An automated extraction of project-specific sources
and sinks of confidential information from the design,
which we leverage to reduce the number of false alarms
raised by an existing data flow analyzer (Sect. 4.2).

(iii) An extended implementation (Sect. 5) including
improved user-interface.

(iv) An evaluation of the security compliance checks and
data flow analysis with two studies on open source Java
projects (Sect. 6).

The two developed types of security compliance checks are
relatively precise (average precision is 79.6% and 100%),
but may still overlook some implemented information flows
(average recall is 65.5% and 94.5%) due to the large
gap between the design and implementation. Our approach
enables a project-specific analysis with up to 62% fewer false
alarms raised by an existing data flow analyzer. These results
are certainly valid within the bounds of the threats to validity
presented in Sect. 7. We position our contributions in the con-

@ Springer

text of the related work in Sect. 8 and present the concluding
remarks in Sect. 9.

2 Background

This section describes the background on the design-level
model, implementation-level model, architectural compli-
ance, and data flow analysis. We consider the Eclipse Secure
Storage [20] to illustrate the models considered in this work.
The secure storage allows plugins to store and access secret
data. This functionality is used, for example, by the Git exten-
sion of Eclipse to store user names and passwords [70].

2.1 Design-level model (SecDFD)

At design time, the processing of system data can be speci-
fied with a variety of notations. Apart from DFDs, frequently
used notations are activity diagrams [14] and business pro-
cess models (BPMN [6]). Our rationale for focusing on DFDs
is twofold: First, they are widely applied in practice, specifi-
cally, in the automotive industry [41] and at Microsoft [62] as
part of their STRIDE methodology. Second, they represent
an essential set of concepts necessary for data flow anal-
ysis (processes and data flows between them), which can
be mapped exhaustively to activity diagrams and business
processes, rendering our mapping generation technique also
applicable to these model kinds.

In what follows, we introduce DFDs and the extended
security notation which is required for checking the consis-
tency between planned security and implemented security
properties.

Data flow diagrams (DFDs) A Data Flow Diagram (DFD)
is a graphical representation of the software architecture and
the information it handles [62]. This type of directed graph
represents how the information enters, leaves, and traverses
the system. The DFD consists of processes (active enti-
ties), external entities (e.g., 3rd parties), data stores (where
information rests), data flows (carrying the exchanged infor-
mation), and trust boundaries (signaling trust levels). Figure 1
depicts a DFD for the Eclipse Secure Storage. The plugin
attempts to access a secret by sending a request including
path information of where to look for the secret (e.g., a pass-
word request for a user name of a Git account). The secure
storage queries an internal tree-like data structure to find the
corresponding node containing the secret. Next, the cache
is queried for the secret value, which can be in clear text
(i.e., secret on flow 6 in Fig. 1) or encrypted (i.e., encr. data.
on flow 7). If the value is in clear text, the secret is sent to
the plugin. In case of an encrypted value, a decrypt operation
either fetches the root password from the operating system or
prompts the user to provide it. Upon a successful decryption,

Checking security compliance between models and code

6. secret Cache

Plugin

Legend

0. secret Data row)

External
Entity

Data Store

Legend

Asset: property
Data flowy,

CONTRACT
External
Entity
Decrypt

data Data Store

Fig.2 An excerpt of the SecDFD for Eclipse Secure Storage

the secret is sent to the plugin (flow 10 in Fig. 1). Though
useful for performing architectural threat analysis [64], we
do not use trust boundaries in our work.

Security extension To capture security properties at the
architectural level, we use the Security Data Flow Diagram
(SecDFD [67]). SecDFD is a notation that enriches DFD with
security concepts to enable a formally grounded information
flow analysis, focusing on the confidentiality and integrity
of information assets. An information asset is specified with
a unique name, a source element, (where the asset is first
created), target element(s) (where the asset is intended to be
consumed or atrest), a type, and alevel of confidentiality con-
cern (high (annotated with “C” in Fig. 2) or low). The data
flows that carry assets between other elements (e.g., from
an external entity into a process) refer to the specified asset
instances. The direction (and order) of the data flows carry-
ing the assets is specified explicitly (as part of the regular
DFD notation).

Second, process nodes can be tagged with security con-
tracts that define how the security properties of assets change
upon exiting the node. A contract of a process node is ini-
tialized by specifying the contract type, the incoming and
the outgoing assets (which must be transported over some
data flows of the process). The contracts are essential for the
security analysis with label propagation in the SecDFD. The
SecDFD defines four such contracts.

— Encrypt or Hash contract. The contract for encrypting
input asset(s) always results in propagating a low (public)
label on the output flow(s).

— Decrypt contract. If the input asset is low decrypting,
it will result in propagating a low label. However, if the
input asset is high decrypting, it will result in propagating
a high label on the output flow.

— Join contract. The contract for joining two or more assets
propagates the label equivalent to the most restrictive
input asset. For example, if a confidential asset is joined
with a non-confidential assets, the asset on the output will
be confidential.

— Forward or Copy contract. This contract will copy the
labels of the input asset(s) to the output flow(s) carrying
the corresponding forwarded asset(s).

Finally, the user can specify attacker zones. An attacker
zone is defined by a unique name and refers to SecDFD ele-
ments (specifically, external entities, processes, data stores,
and data flows) which, according to the user, may be part of
an attack surface. For the purpose of this study, the attacker
zones mark the elements of the model where an attacker is
able to observe (read) all assets, but other security analyses
may require more elaborate attacker models. The user can
modify the attacker zones after label propagation and play
out several what-if scenarios.

These simple extensions allow us to identify information
leaks in the model. For instance, the extended notation [67]
is shipped with a simple label propagation (using a dept-first
search) according to the specified process contracts. Once
the labels have been propagated, a static check is executed to
determine if any confidential information flows to an attacker
zone.

In comparison with the regular DFD from Figs. 1 and 2
shows an excerpt (for clarity) of the SecDFD for the Eclipse
Secure Storage example. For the concrete syntax and seman-
tics of SecDFD, we refer the reader to [67]. If a plugin
requires secret data that is cached encrypted, the user must
enter a password when prompted (c.f. pass. ext. in Fig. 2).
The externally provided password is then used to decrypt the
cached secret data, and if successful the plugin is allowed to
read it. First, the designer must specify that the external pass-
word is confidential. Second, the designer needs to specify
the process contract (e.g., for process Decrypt_data). Since
the external password is confidential, it should not be leaked
to other plugins running in the environment. But, in Fig. 2,
the Plugin is not a malicious entity (i.e., it is not part of an
attacker zone).

2.2 GRaViTY program model (PM)

To create a mapping between SecDFDs and their concrete
implementation, we need an easy to analyze representation
of the source code. Representations such as abstract syntax
trees (AST) contain every detail from the implementation,
which makes it hard to analyze for security purposes. Many

@ Springer

K. Tuma et al.

:TPackage

__parent child :TPackage

tName = "security"

tName = "storage"

contains

contains

:TClass

tName = "SecurePreferencesWrapper"

| defines
:TMethodDefinition

:TClass

tName = "SecurePreferences"

defines |
call | :TMethodDefinition

call

|/ contains

:TClass

tName = "SecurePreferencesRoot"

defines |
[:TMethodDefiniton |

; (definitions

:TMethodSignature

signatures

returnType

definitions /N
:TMethodName :TMethodSignature

tName = "get"

signatures

:TClass

returnType

tName = "String"

bpe /(00 [parameter J<—]

:TParameter

type

definitions

:TMethodSignature

—
signatures |

:TMethodName
tName = "getPassword"

:TClass

——>| :TParameter

tName = "SecurePreferencesContainer"

>| :TParameter

Fig.3 Excerpt from the Program Model (PM) of the Eclipse Secure Storage (shown as UML object diagram)

details about the implementation are not required for our
approach. At the same time, important information is not
always directly accessible. For example, in the source code
files or an AST accesses of fields are not directly visible
as access edges between the source and the accessed field,
but are access statements within the source to some field
with a given name. For our approach, it is only important
to know that there is an access to a specific field from some
source, but we do not need to know every detail about the
circumstances of this access. The Program Model, herein
PM (proposed with the GRaViTY -framework [48,49,54]),
creates a more suitable abstraction for security analysis and
allows easy queries, which were very useful for our approach.
The GRaViTY-framework has been used for the evalua-
tion and execution of refactorings [49], for the detection of
anti-patterns [50], as well as for the automated design opti-
mization of Java applications [58].

Figure 3 shows an excerpt of the PM created by the
GRaViTY -framework for the Eclipse Secure Storage exam-
ple. The figure shows two method calls. The first call is
from the method get (String, String), defined in
the class SecurePreferencesWrapper, to the method
get (String, String, SecurePreferenesCon-
tainer) oftheclass SecurePreferences. The second
call is from the called method of the first call to the method
getPassword (String, IPreferencesContail
ner, boolean) whichisdefined inthe class SecurePr
eferencesRoot.

On top of the figure, we can see the package structure of
the program. All packages without a parent can be taken
as entry points for a search. Additionally, it is possible
to iterate over all types directly. The types (in this case
classes) are shown in the second row, each with a refer-
ence to the members defined within the type. For the classes

@ Springer

SecurePreferencesWrapper, SecurePreferen
ces, and SecurePreferencesRoot, only a single
method is shown. Methods are represented by a triple of
method name, method signature and method definition. This
allows an efficient search for specific methods, starting with
the method name, continuing with signatures, and finding
concrete definitions for them. Method signatures have param-
eters which have a reference to the type representing the
parameters type and a reference to the return type. In the PM
excerpt, only the parameters of the signature get (String,
String) : String are shown.

A benefit for our mapping from SecDFD to Java imple-
mentations is the possibility of an iterative search, starting
only with little knowledge about the searched elements—
e.g., a method name. The PM allows to start a search with
such little information and to find more concrete elements by
considering more information like method parameters with-
out iterating over all method definitions defined in the source
code.

2.3 Compliance

Running compliance checks reveals the relations between
a set of components of the design-level model and a set of
components of the implementation-level model. As outcome,
three different types of relations can be discovered.
Convergence In the context of the mappings, convergence
means that the user has accepted a suggested mapping or has
manually defined a mapping. In the context of security prop-
erties, convergence means that a planned security contract is
implemented at the correct location and no leaks have been
detected by a data flow analyzer.

Divergence We refer to divergence when there are flows of
assets in the mapped implementation which have not been

Checking security compliance between models and code

3.1 - 3.2 Automated e
Mapping of Elements)

3.3 User Verification of
Mappings

4.1 SecDFD Contract
Verification

3.4 Manual Mapping of | |
Elements

4.2 Data Flow Analysis }

Fig.4 Semi-automated mappings approach (Sect. 3) and security com-
pliance checks (Sect. 4)

defined in a DFD. In the context of security properties, we
identify divergence when (i) there exists an implemented
data flow which does not comply with the specified secu-
rity contracts of the process node, or (ii) the analysis with
a state-of-the-art data flow analyzer reports a leak of poten-
tially confidential information.

Absence In the context of the mappings, absence means that
the user finished using our approach, but there are still design-
level elements that have not been mapped. In the context
of the security properties, absence means that the SecDFD
contracts have not been implemented.

3 Enabling compliance checks with
automated mapping generation

Assuming a correct DFD, the way it is implemented can vary
depending on concrete design (e.g., architectural patterns)
and implementation specific decisions (e.g., programming
language). Therefore, a fully automatic generation of a cor-
rect and complete mapping between DFDs and code is not
feasible. Yet, a manual specification of the same mapping is
inefficient and error-prone. To this end, we propose an itera-
tive technique for interactively guiding the user in finding an
adequate mapping by combining automated mappings with
user decisions as shown in Fig. 4. In step 1, mappings between
DFD elements and implementation elements are calculated
using a heuristic technique. In step 2, these mappings are
presented to the user and manually checked by her. In step 3,
the user can manually map additional elements. Afterward,
the automated mapping is executed again, benefiting from
the user input. This process terminates when the user can-
not find any additional mapping or finds a violation. Next,
the user can perform a security analysis of the SecDFD with
respect to the implementation (Sect. 4).

In this section, we describe the steps of our technique in
detail, including the automated suggestions. In addition, we
explain the use of these mappings for compliance checks. In

Sect. 3.1, we define the allowed correspondences between
DFD and PM element types. In Sect. 3.2, we show how our
automated technique in step 1 establishes concrete mappings
between DFDs and their implementations by means of a
naming- and structure-based heuristics. In Sects. 3.3 and 3.4,
we explain the interactive steps 2 and 3 of our technique. In
Sect. 3.5, we argue how the created mappings can be used
for checking general compliance.

3.1 Corresponding elements

As a prerequisite for mapping DFD elements to code ele-
ments, we have to define which DFD element can correspond
with which code elements.

Assets — types The assets in a DFD are the elements holding
critical data. On the level of implementation, data are usually
stored in fields, processed using variables and transmitted
using parameters and return values. A single asset can be
stored in many different locations at the same time which
makes it infeasible to map an asset to every single location.
The only property of an asset which only changes rarely in
programs, written in an object-oriented languages, is the asset
type.

Data stores — types & methods If we think about data
stores like the cache in Figs. 1 and 2, it is quite obvious
that this could be a field in some class. But it could also be
implemented by an operation which, e.g., requests the cached
values from an external server by creating HTTP requests.
The common trait between these two variants is the type
used to store the data in. The field has a type which provides
getters and setters for using the data store, and the method
used to get data from a remote server is implemented in a
type. Therefore, we map data stores to types as well as to the
methods used for accessing the stored data.

Processes — method(-names) Processes in DFDs describe
functionalities which process data, like methods in imple-
mentations do. Obviously, these two elements correspond
with each other. While a concrete method definition in an
implementation contains all details describing the functional-
ity of this method, the processes only have a name describing
the functionality. We assume that a developer implement-
ing a process will choose a similar name for the methods
implementing this process. This leads us to a correspondence
between the names of processes and the names of methods.
Processes + Assets — method parameters Between pro-
cesses in a DFD, data can be exchanged using flows, where
the exchanged data are represented by assets on the flows.
In the methods implementing these processes, the same data
have to be exchanged. Data between methods in implemen-
tations are usually exchanged using parameters and return
values. Therefore, we can combine the name mappings
between processes and methods with the assets flowing into

@ Springer

K. Tuma et al.

|—-/Constraint: equivalent(dfd.name, pm.tName) /L—1
pm:TMethodName

Fig.5 Rule describing the name matching for methods

:TMethodName
signatures

outFlows
:TMethodSignature

assets returnType
:Asset O TAbstractType

Fig.6 Rule for extending name matches based on return types

i +
dfd:Process é

:Process

and out of a process to method parameters giving us the
according method signatures.

3.2 Semi-automated mapping

In what follows, we discuss the steps of our automatic gen-
eration of mappings in detail.

The automated generation of mappings is based on name

matchings and structural heuristics, which are sequentially
executed and complement each other. For illustration, we
formalize two of our mappings using graph rules, using
a notation inspired by algebraic graph transformation [21]
(explained below). The other mappings can be formalized in
a similar way.
Name matching First, the names of elements from a DFD are
mapped to the corresponding names in the implementation.
Asset and data store names are mapped to the names of types,
and process names are mapped to the names of methods.
Figure 5 shows a rule for mapping processes from a DFD
to method names from a PM. A correspondence (visualized
as circle connecting the corresponding elements) between a
process and a method name is created (denoted by ++) if the
constraint at the top of the rule holds. In this case, the names
of the two elements on the left and right of the rule have to
be equivalent. The precise definition of this equivalence is
described in what follows.

Names, both in a DFD and in a Java implementation, are
usually built by concatenating multiple words. For exam-
ple, a Java method name getPassword consists of the
word get and password. These words can vary slightly in
the names of the corresponding DFD processes (e.g., in plu-
ral form, passwords instead of password). In addition, the
style of word concatenation can differ. In Java, usually the
camel case (getPassword) is used, whereas in DFDs this
is not a prescribed style, so underscores may also be used
(Get_Passwords).

To deal with these issues, we first split the strings at fre-
quently used delimiters and upper-case characters. This gives
us for the example the sets of words [get, Password] and
[Get, Passwords]. Then, we compare the lower-case ver-

@ Springer

sions of the words with each other using a fuzzy compare
based on the Levenshtein distance [38]. The Levenshtein
distance is a measure of the minimal amount of characters
which have to be removed, added or flipped to change one
word into the other one. For the given example, this dis-
tance is zero and one as the first word is already identical
and only the character s has to be added to change password
into passwords. We accept different distances between words
for considering them as identical according to the length of
the words to be compared.

Finally, a DFD process is usually implemented in multiple
methods, typically having slightly more concrete names. For
example besides the method getPassword, there might
also be an additional method internalGetPasswod
involved in the implementation of the process Get_Passwords.
But the DFD process name might also contain additional
information—e.g., the process getr_Passwords_External of
the DFD in Fig. 1. To address this challenge, we compare
all words from the two names with each other and count the
similar words. If this number reaches an threshold of more
than half the number of the average words of the compared
names, we consider the names sufficiently equal.

For the example DFD in Fig. 1 and the PM excerpt in
Fig. 3, we get a name match between the Get_Value process
and the two method names get and getPassword as well
as a match between the process Get_Passwords_External
and the method name getPassword. While two of this
matches are expected, the match between Getr_Value and
getPassword is unexpected and should be dropped in the
following steps.

Extending name matches to method signatures For every
method name, multiple signatures may exist. Even if our
name matches were always perfectly correct, this would not
imply that all signatures with this name are the ones corre-
sponding to a given process. For example, besides the rel-
evant signature getPassword (String, IPreferen
cesContainer, boolean) :PasswordEXt,

there might be a second signature getPassword() :
char [] defined in the Java standard library which is never
used in the implementation. To identify the relevant signa-
tures, we use data flow information about assets flowing into
and out of a process. Information flowing into a process has to
be passed to the implementation of the process, for example,
as a parameter value. Likewise, information leaving a process
can leave it over return values and parameters. Accordingly,
we can use the mapped assets to identify relevant signatures.
For every signature, we count how many mapped assets are
compatible with the parameters and return types of the exist-
ing signatures. If we have at least one match, we consider
this signature for further mappings.

A rule for extending a process mapping based on an asset
flowing out of a process is shown in Fig. 6. On top of the
rule, we can see an existing mapping between a process and

Checking security compliance between models and code

amethod name, as, e.g., created by the rule shown in Fig. 5. A
mapping to one of the signatures having this name is created
if there is a mapping between an asset flowing out of the
process and a type which is the return type of the signature.

If we look at the return type of the signature get (String,

String) : String and assume that the secret asset from
Fig. 1 has been mapped to the class java.lang.String,
we will accept this signature as corresponding with the pro-
cess Get_Value. The other method name corresponding with
this process was getPassword. The return type of this
method signature is PasswordExt, and also no parameter
type is matching to an asset. Accordingly, we do not create
a correspondence.
Finding implementations of signatures The last step is to
find concrete implementations of a signature corresponding
with the process. For every signature, there might be several
concrete implementations, all of which do not necessarily
correspond to the process. We make use of the flows between
different processes to find the concrete definitions.

If there is a flow from one process to another process, this
does not only mean that there has to be a signature which has
the capability to return or receive the according asset. There
also has to be a definition of this signature which is called
from a definition in the other process. Therefore, we search
for two kinds of data flows between the concrete definitions
of the signatures found before.

1. Parameters passed by a call from the source of a flow to
to the target of the flow.

2. Return values returned along a call from the target of a
flow to the source of the flow.

The flow between two such definitions is not necessar-
ily a single direct call between the two definitions. There
can also be multiple definitions in between forwarding
data. For example, we can see in Fig. 3 a call between
the methods get (String, String, SecurePref-
erenesContainer) :String and getPassword
(String, IPreferencesContainer, boolean)
: PasswordExt but in the DFD in Fig. 1 there is no flow

between the processes Get_Value and Get_Passwords_External,

they have been mapped to. In the implementation, the get
method forwards the return value of get Passwordtoacall
of method decrypt which has been mapped to the process
Decrypt_data. Matching this intermediate to one of the two
involved processes is non-trivial. However, if we found such
aflow, we can definitely assume that we found two definitions
implementing at least parts of the two processes.

The intermediate definitions can be partly mapped to one
of the two processes by considering the internal coupling
in a process. For every pair of signatures mapped to the
same process, we look for pairs of definitions calling each
other. For example, this is the case for the definition of the

signature internalGetPassword, which is called by
getPassword (String, IPreferencesContai
ner, boolean) :PasswordExt.

Cleanup After matching assets and processes, we have to
decide which matches are most likely to be correct and,
therefore, should be presented to the user. For that reason,
we introduce a certainty score for our mappings. This score
is calculated with respect to the quality of the underlying
name matching as well as the coupling of matched elements
with other matched elements. For every DFD element, we
only present mappings whose score is higher or equal to the
median score of all mappings for this element.

The mappings sorted out in this step are not presented to
the user, but may be discovered later again in the interac-
tive process—based on future matches, which might have a
coupling to the elements that are now discarded.

3.3 User verification of mappings

The mappings created in the previous step are now presented
to and verified by the user. For every asset-, data store-
type and process-definition mapping, the user can preform
three actions.

Accept: The user can accept the mapping. From then, the
mapping cannot be discarded by the optimization step of
the automated mapping approach anymore, and all mappings
coupled to this mapping obtain a higher certainty score.
Reject: The user can reject the mapping. From then, this
mapping is never presented to the user again and it is not con-
sidered anymore for extending it to other mappings. All other
mappings to which the rejected mapping has been extended
will be removed, too, but might be presented to the user again.
Tolerate: The user can choose toignore some suggested map-
pings. Mappings that are not explicitly accepted or rejected
are suggested again and can be re-assessed in future itera-
tions.

Mappings accepted or rejected by the user allow the
heuristic to automatically discard related mappings that have
only been found by following up the rejected mapping. This
is how the search space is reduced in the next automated iter-
ation. Conversely, manually accepting mappings can lead to
the score of related mappings being increased and, for this
reason, allow to propose new mappings which haven not been
considered as correct ones before. Anyhow, a limitation of
our heuristic is that they cannot detect mappings which are
outside of the search space created by the initial name map-
pings. We are overcoming this limitation in our approach by
including user feedback as described in what follows.

3.4 Manual mapping of elements

To increase the search space, an additional user step is con-
ducted after the user manually verified the automatically

@ Springer

K. Tuma et al.

created mappings (or at least a part of them). In this step, the
user has to add at least one new mapping to give additional
input to the automated mapping algorithm. The selection of
this manually mapped element can have a large impact on
the efficiency of the following automated steps.

3.5 Compliance of models and code

The mappings can be used to perform compliance checks. In
what follows, we describe the check developed to determine
if the implementation corresponds with the specification in
the DFD.

The correspondence checks take place while the mappings
are created. Using the proposed approach, we check for the
three kinds of correspondences introduced in Sect. 2.3:
Convergence All DFD elements which have been mapped
to implementation elements and have not been rejected are
allowed to be mapped. Following the definition of conver-
gence, the convergences between the DFDs and the code are
described by the set of all allowed mappings.

Divergence Elements present in the code, but not specified
in the DFD represent a divergence between the DFD and
code. To help the user discovering divergences, it is possible
to show all flows from members mapped to one process to
other members not mapped to this process. If the target of
such a flow has not been mapped to any process, there seems
to be a divergence. But, a divergence also arises if there is
a flow between two processes in the code that has not been
specified on the DFD. If an critical asset is communicated
along such a flow, this is not only a divergence from the
intended design but a security violation.

Absence If we are neither able to map a DFD element to
the code automatically and the user is not able to map the
same element when asked, we discover an absence of speci-
fied functionality in the code. Assuming correctness of DFD
models, we only have to consider this one direction of the
absence (concerning the opposite direction, see divergence).

Using these checks, a developer or code reviewer can
detect a compliance issue between an DFD and the imple-
mentation at hand. However, regarding security, these checks
are not precise enough: They might not reveal flows of confi-
dential assets into parts of the program that are not supposed
to take place—e.g., if a developer uses a full representation
of an object, instead of a stripped one. To this end, we can
perform more sophisticated security checks, as described in
what follows.

4 Security compliance with static program
analysis

After the user creates the mappings using our approach
(Sect. 3.5), she can use them to verify the security of the

@ Springer

implemented systems. First, the developer can automatically
verify if the specified SecDFD contracts are implemented
(see Sect. 4.1). Second, she can automatically extract project-
specific sources and sinks and perform a data flow analysis
(see Sect. 4.2). The provided feedback of compliance vio-
lations and potential leaks may cause her to revisit the
implementation, and reflect the changes in the SecDFD.

4.1 Verification of specified SecDFD contracts

This work used taint analysis techniques, which are a kind
of information flow analysis techniques where data objects
are tainted at the source and tracked to the sink using data
flow analysis [39]. Concretely, we developed static checks to
verify the compliance of the implementation to the SecDFD
encrypt, decrypt, forward, and join contracts. We assume an
existing mapping between the SecDFD and the implementa-
tion before executing the checks.

Encrypt and decrypt contracts When executed, all encrypt
and decrypt process contracts will be checked against the
implementation. For each process with such a contract, we
collect all the mapped method implementations that call at
least one method signature performing an encrypt or decrypt
operation. If at least one such method implementation exists,
we consider that the process contract has been implemented,
and mark it as convergence. If no such method implementa-
tion has been mapped to this process, we consider that the
process contract has not been implemented, and mark this
occurrence as absence.

We provide a list of well-known methods that are called
during cryptographic operations. We compiled this list by
inspecting the Java standard security library, and packaged
it together with the plugin. In addition, the user is able to
add project-specific methods to this list (at runtime) via the
user interface. We remark that state-of-the-art static analysis
tools (e.g., SonarCube!) maintain similar rules for checking
implemented encryption logic, but with our approach users
can verify their expectation regarding the planned security.
Forward and join contracts The forward and join contracts
at the SecDFD level describe local data flows within a pro-
cess that have to be present in the implementation. To check
if the specified contracts have been implemented, we pro-
pose a two-step procedure introduced in what follows. First,
we extract the relevant asset-communicating flows from the
process’s implementation (I-Flows). Second, we compare the
implemented flows with the expected flows specified in the
SecDFD (D-Flows).

The main challenges in checking forward and join con-
tracts are that one process can be realized by multiple
methods, but there are also many methods that do not belong
to any process but interact with multiple processes. Further-

! https://www.sonarqube.org.

https://www.sonarqube.org

Checking security compliance between models and code

more, an asset in the SecDFD can be realized by different
types in the implementation. For example, the encrypted data
(encr. data) in Fig. 2 are realized by instances of the Java
classes String and CryptoData. In addition, a single
type in the implementation can be used to create instances of
different assets. This is especially a problem for frequently
used types like strings that can be used to represent nearly
every asset as shown before.

Input : Process p, Mapping m
Output: I-Flows i

1 methods <— m.methods(p)
2 in < inFlows(methods)
3 foreach flow € in do
4 type <— communicatedType(flow)
5 if m.mapping(type) = ¥ then
6 | remove flow from in
7 end
8 end

9 out < outFlows(methods)
10 foreach flow € out do
11 type < communicated Type(flow)
12 if m.mapping(type) =) then
13 | remove flow from out
14 end
15 end
16 1 < {}
17 foreach target € out do
18 sources <— reachableBwd(target, in)
19 if sources # ¢} then
20 ‘ add (sources,target) to i
21 end
22 end
23 return i

Algorithm 1: Algorithm for the Extraction of the I-Flows

i for a given Process p

In Algorithm 1, we show the pseudocode for the extrac-
tion of the implemented flows (I-Flows) for a given process.
For this purpose, we leverage a data flow graph as it is
constructed by state-of-the-art tools such as Soot [12]. To
simplify the implementation, we used a preliminary version
of an extracted data flow graph at the abstraction level of
the PM [42] that provides an immediate coupling among PM
elements, such as parameters, and the data flow graph. Fol-
lowing the definition of the forward and join contracts, we
search for implemented data flows from one or more source
methods that flow through the methods implementing the
process into a single target method. Accordingly, an I-Flow
object consists of the flow’s target method and a set of the
source methods from which the data flow originates. The
inputs to this algorithm are the process for which we want
to extract the implemented flows and the mapping described
in Sect. 3.1.

First, in line 1, we retrieve the methods implementing the
process p from the mapping m. For these methods, we search

in line 2 for the relevant incoming data flows in the imple-
mentation. To this aim, we implement the operation inFlows
thatreturns all data flows entering a set of methods. This oper-
ation aggregates all incoming data flows into the methods’
parameters and all return flows of called methods.

Next, we filter the collected data flows in lines 3—8. For
the forward and join check, only the flows that can be used
to communicate assets from the SecDFD are relevant. This
means that the type communicated along a data flow has to
be mapped to an asset. Accordingly, we filter out the flows
which communicate unmapped types. At this point, it is not
important which assets can be communicated along the single
data flow.

In lines 9-15, we proceed similarly for the data flows leav-
ing the methods implementing the process. Comparable to
inFlows, outFlows collects all data flows leaving the set of
methods. These are the return flows of the methods them-
selves and all data flows from the methods into parameters.
Again, we filter the flows according to the communicated
types.

After filtering, in line 18, we determine for every outgo-
ing flow (farget) which of the flows entering the process’s
implementation (in) can flow into this outgoing flow using
a backward search on the data flow graph. In line 19, we
check if we found reachable incoming flows (sources). The
pair of the found sources and the target represent one I-Flow,
that is added to the result set i. If exactly one incoming data
flow is propagated to the outgoing data flow, we found an
implemented forward, and if multiple incoming data flows
are propagated to an outgoing data flow, we found an imple-
mented join. Note that we only consider patterns with one
outgoing flow. If there are contracts in the DFD with multiple
outgoing flows, they have to be split into multiple contracts.
Finally, we return all found I-Flows.

After we extracted the I-Flows, we compare them to
the expectations from the SecDFD using Algorithm 2. The
input to this algorithm is the process, the mapping, and the
extracted I-Flows. The output is a set of identified violations
(absence and divergence).

The algorithm is again based on two steps. First, we collect
all possible matches between the I-Flows and the expected
flows from the SecDFD contracts (D-Flows). We consider
the implementation of a contract to be convergent with the
SecDFD if and only if there exists a bidirectional one-to-one
mapping between every D-Flow of all contracts and all I-
Flows extracted using Algorithm 2. We call this property a
biunique mapping. But, the matches are usually not biunique
because of the overlapping asset type mappings; therefore,
we have to reduce the initial set of matches to a set of biunique
mappings in the second step.

To collect the matches, we iterate over every contract and
every outgoing asset of the contract in lines 2 and 5. For each
of these pairs, we select I-Flows if their possible outgoing

@ Springer

K. Tuma et al.

Input : I-Flows i, Process p, Mapping m
Output: Violations v

1v<{}

2 matches < {}

3 foreach contract € fwdJoinContracts(p) do

4 inAssets < contract.inAssets()

5 foreach outAsset € contract.outAssets() do

6 flows < {}

7 foreach iflow € ido

8 type < communicatedType(iflow.trg())

9 if outAsset € m.mapping(type) and ¥ s € iflow.src() :
(m.mapping(communicatedType(s)) N inAssets) # ()
then

10 | add iflow to flows

1 end

12 end

13 if flows = () then

14 ‘ add "Absence: Not implemented" to v
15 end

16 add (contract, outAsset)— flows to matches
17 end

18 end

19 solution < findSolution(matches)

20 if solution = ¢ then

21 ‘ add "Divergence: No biunige assignment" to v
22 else

23 foreach flow € (matches \ solution.flows()) do
24 | add "Divergence: Not in DFD" to v

25 end

26 end

27 return v

Algorithm 2: Algorithm Checking the Implemented Flows
i for a given Process p against the Specified Contracts

assets contain the expected asset and if for every incoming
flow at least one possible asset is contained in the set of
expected incoming assets (see line 9 in Algorithm 2). If no
such I-Flow exists, the contract is not implemented (for this
outgoing asset) and we detect an absence (lines 13 and 14).

After collecting all possible matches, we have to find a
biunique solution within the created mappings between the
D-Flows and the I-Flows. This is implemented in the function
findSolution. The easiest implementation is to iteratively
assign I-Flows to D-Flows and to check if a solution is still
possible, meaning that there is no unassigned I-Flow that
cannot be assigned to an unassigned D-Flow anymore. If so,
we can assign the next I-Flow to a D-Flow, else, we have
to backtrack. If we cannot find such a solution, we report
a violation as there is at least one not implemented contract
and we detected an absence (lines 20 and 21). If we found
a solution, all specified contracts have been implemented
and we found a convergence. However, all I-Flows that are
not part of the solution are still reported as violation as they
are unspecified forwards or joins of assets and represent a
divergence.

@ Springer

4.2 Optimized data flow analysis

To perform a data flow analysis, the developer needs to iden-
tify the sources and sinks of secret data in the implementation.
More importantly, to perform a meaningful and precise data
flow analysis, the sources and sinks must be identified cor-
rectly. For instance, we have found the standard substring
method in Java (java.lang.String.substring
(int, int) :String) as one of the sink method signa-
tures in an existing list of identified sinks.? This will result
in many false alarms raised by the analyzer, since it seems
unlikely that data can leave the system through this method
and itis a very common operation over strings in Java. Dually,
overlooking an important source may result in overlooking
true leaks. Though some sources and sinks can be extracted
from library APIs [4,56], finding project-specific sources still
remains a challenge. In addition, many data flow analyzers
work with a flat security policy. Specifically, they raise an
alarm if there is an access path between any of the source
methods and any of the sink methods. But, certain tainted
data might be expected to flow to some sinks (e.g., writing
an encrypted password to local storage) but not others. If
all the tainted objects are treated equally, the analyzer raises
false alarms. In response to this challenge, we aim to auto-
matically extract project-specific sources and sinks for each
SecDFD asset.

Project-specific sources The SecDFD requires the user to
specify confidential assets, thus their source element (in the
model) can easily be determined. There are three possible
types of source elements: an external entity, a data base, or
a process. If the asset source is an external entity and it is
mapped to method definitions, their signatures are collected
as sources. But, if a mapping of the external entity does not
exist (e.g., for the entity Plugin from Figs. 1 and 2), the sig-
natures of the mapped method definitions of the processes
reading from that entity are collected instead. If the asset
source is a data store, it can be mapped to methods or types.
First, the signatures of method definitions mapped to the data
store (if any) are collected. Second, if the data store is mapped
to a type (e.g., a Class), the signatures of method definitions
defined by this class are also collected, but only if the return
type matches the asset type. Finally, an asset source can be a
process element (e.g., a random number generator). If there
is no process contract with this particular asset on the out-
put, then the signatures of the method definitions mapped
to the process are collected. But, the asset may originate in
the process as a result of a transformation (e.g., a join of
two assets). In this case, the assets on the contract inputs are
traced backwards reaching either an external entity, a data
store, or a process with no contracts impacting the traced

2 https://github.com/secure-software-engineering/SuSi.

https://github.com/secure-software-engineering/SuSi

Checking security compliance between models and code

FlowDroid £]
9
FlowAnalysis
SecurityChecks g]
ContractVerification g]

DataFlow £] ProcessingContracts €] CryptoContracts £]

A
O
Maplplng
SecDFD £] O) Mapping &] GRaViTY £]
EDFD PM

Fig.7 Architecture of the implementation

asset. The signatures of the method definitions mapped to
the traced element are collected as sources.

Allowed sinks We collect the sink method signatures from
[4,56] (excluding methods of Android specific packages) and
exclude the allowed sinks. The allowed sinks are maintained
for each confidential asset. These are method implementa-
tions mapped to SecDFD elements where the confidential
asset exits the system (i.e., external entities and data stores).
For example, the secret flowing into the Plugin (data flow 10
in Fig. 2) is expected to flow there. Therefore, we consider
the Plugin as an allowed sink. However, since the Plugin can-
not be mapped to the implementation, we instead consider the
method implementations mapped to the Decrypt data process
as allowed sinks.

Attacker zones The SecDFD allows the user to specify
attacker zones, which denote what elements are observable
by the attacker. For each asset, we collect signatures of all
the method definitions mapped to elements of attacker zones
and add them to the list of sinks and (if needed) remove
them from the allowed sinks. In this way, the user is able to
influence the security policy of the SecDFD and perform an
analysis assuming over-exposed components or APIs. This
kind of what-if analysis can be useful to identify the impact
of a security mitigation on the design level.

5 Implementation

In this section, we give a quick overview of the imple-
mented tool. We refer the interested reader on how to use
the tool to “Appendix”. The approach is implemented and
packaged as a publicly available Eclipse plugin [53]. The
architecture of our implementation is shown in Fig. 7. Our
implementation is structured according to the two main con-
tributions of this work. First, we have the semi-automated
creation of mappings realized in the component Mapping,
and second, the security compliance checks realized in the
SecurityChecks component.

Semi-automated mappings For the creation of mapping
suggestions, we implemented the name matches and the
patterns shown in Sect. 3 in hand written-java code. The
implementation leverages an existing implementation for
modeling SecDFDs using an Xtext DSL with editor support
[67]. Also, we use an existing plugin for generating the Pro-
gram Model from Java source code [54]. The SecDFD and
the PM are accessed through the Java APIs provided by the
components realizing the models.

Using the Eclipse API, an integration into the Java source
code editor is provided. For working with the SecDFD, the
textual editor is provided by the SecDFD component. In
addition, we provide a graphical Editor based on the Sirius
framework.? For showing the proposed mappings to the user,
we registered a view in the Eclipse IDE. As a single system
is usually described in multiple SecDFDs, we extended the
implementation of this view to support multiple SecDFDs at
the time. Details on how the user interacts with our imple-
mentation are presented in “Appendix”. Created mappings
can be accessed through a wizard that shows all SecDFDs
within a project as well as all existing mappings.

Access to the mappings is provided to other components

though a Mapping interface, e.g., for the verification of
SecDFD contracts. This interface allows to query the map-
pings in both directions, for mappings to a given SecDFD
element and mappings to PM elements for a single or multi-
ple SecDFDs.
Security checks The implementation of the security com-
pliance checks is following the structure of Sect. 4 and is
separated into two components. One component for per-
forming optimized data flow analyses (DataF1low) and one
for the verification of the contracts specified in a SecDFD
(ContractVerification).

In this work, we perform the data flow analysis using
FlowDroid [5], a state-of-the-art taint analyzer for Android
applications, but also applicable to Java programs. The 2.7.1
release of FlowDroid was obtained from its release website*
and is imported as a library in our plugin.

FlowDroid raises an alarm if and only if an object flows
from a predefined list of source methods (i.e., these objects
are tainted) into sink methods (i.e., they violate the security
policy). The sources and sinks must be identified and are
passed as parameters to the analyzer. To simply the analysis,
FlowDroid relies on capabilities of the Soot compiler frame-
work [36] which converts Java bytecode into the Jimple [68]
intermediate code representation. This makes the analysis
in FlowDroid precise as it is flow-sensitive (the call graph
is aware of the order of statements) and context-sensitive
(the call graph is enriched with the context of the callees).

3 https://www.eclipse.org/sirius/.
4 FlowDroid Release Site:
engineering/FlowDroid/releases.

https://github.com/secure-software-

@ Springer

https://www.eclipse.org/sirius/
https://github.com/secure-software-engineering/FlowDroid/releases
https://github.com/secure-software-engineering/FlowDroid/releases

K. Tuma et al.

In addition, the Jimple representation is able to handle Java
reflection, but only for reflective calls where the types of all
referenced classes are known. The analysis in FlowDroid is
also object-sensitive (i.e., the call graph distinguishes method
invocations on different object instances) since it uses access
paths as taint abstractions. In general, taint analyzers con-
sider only explicit flows for performance reasons [26], but
FlowDroid also supports tracking implicit flows and shows
high performance results on benchmarks (86% precision and
93% recall on DroidBench [5]). We refer the interested reader
to [3] for more details. The DataFlow component of our
implementation executes FlowDroid over its Java API. Fol-
lowing Sect. 4.2, we execute FlowDroid for every asset in the
SecDFD taking its set of allowed sinks and possible sources
into account.

The contract verification is again split into two sub-
components: one for the verification of the forward and join
contracts (ProcessingContracts) and one for the veri-
fication of the encrypt and decrypt contracts
(CryptoContracts). Inboth sub-components, we imple-
mented the checks as introduced in Sect. 4.1 using hand-
written Java code.

6 Evaluation

The evaluation of our approach has three parts. First, we
conducted an experiment to evaluate the automated mapping
creation (Sect. 6.1). Next, we conducted experiments to eval-
uate the verification of SecDFD contracts in implementation
(Sect. 6.2), and the optimization of data flow analysis by
extracting project-specific sources and sinks from SecDFDs
(Sect. 6.3).

Table 1 depicts the characteristics of five open source Java
projects used in our studies.

Jpetstore [45]. This is a web application built on top of
MyBatis 3, Spring and the Stripes Framework. This is an
example with very few classes, implementing the basic func-
tionalities of a web store. In principle, the users are able
to create their accounts, browse, and order goods online.
Jpetstore has been designed as minimal demonstration appli-
cation for MyBatis, which should have a good design and
documentation. The developers tried to strictly follow the
MVC pattern.

ATM simulation [11]. This is a simulation for an ATM
machine developed for academic purposes. The ATM sim-
ulation implements the main procedure of a control system.
Upon start-up, a new session is initiated, and the users are
able to insert their card and PIN number. The session contin-
ues upon a correct PIN entry and provides the users with the
option of a withdrawal, deposit, balance inquiry, and money
transfer. After a completion of desired transactions, the ATM
returns the card and optionally prints the receipt.

@ Springer

Eclipse Secure Storage [20]. As described in Sect. 2,
Eclipse Secure Storage is used for ensuring secure storage
and management of sensitive data within the developer’s
Eclipse workspace. The secure storage allows for plugins
to authenticate and have controlled access to workspace
resources.

CoCoME [33]. CoCoMe is a platform for collaborative
empirical research on information system evolution [30].
This platform helps engineers manage different aspect of
software evolution, such as the system life-cycle, version-
ing artifacts, and comprehensive evolution scenarios. The
implemented system is a cash register.

iTrust [43]. This example is a web application for hos-
pitals which allows the hospital’s staff to manage medical
records of patients, based on 55 use cases. The example orig-
inally stems from a course project has been maintained by the
Realsearch research group at North Carolina State Univer-
sity and was used as an evaluation example in research papers
before [13]. Detailed requirements describing different activ-
ities are available [43]. However, the available requirements
and use cases mostly describe very simple tasks and only a
few of them are realized in the implementation.

6.1 Evaluation of mappings

The purpose of this study was to evaluate the correctness of
the suggested mappings. In what follows, we briefly describe
the design of the experiment, the projects, and the results.
Design of study We conduct this experiment with all five
open source projects from Table 1. To evaluate the correct-
ness of the suggested mappings, we set up an experiment
to compare a ground truth of manually created mappings
with the generated mappings for each of the five considered
projects. The iterative approach involves the user to guide
the generation of mappings in the desired direction. As per
this design choice, we intentionally investigate the correct-
ness of the automated mappings and the impact of the user
separately. Consequently, the evaluation aims to answer the
following research questions.

RQI. What is the correctness of the automated mappings
generated by the plugin? We measured correctness in terms
of precision and recall (dependent variables). Convention-
ally, precision (T P/(T P + FP)) is measured as a ratio
between the true positives (i.e., correct mappings) and all
generated mappings (including the false mappings). A true
positive T P is a correct mapping between the source code
and the DFD element which is listed in the ground truth. A
false positive F P is a mapping between the source code and
DFD element that is not listed in the ground truth. Recall
(TP/(TP + FN)) is measured as a ratio between the true
positives and all correct mappings (including the overlooked
mappings). A false negative F'N is a mapping between the

Checking security compliance between models and code

Table 1 Projects considered in

the evaluation Project Source code DFD
Lloc Classes Methods Elements
jpetstore 1221 17 277 47
ATM simulation 2290 57 225 85
Eclipse Secure Storage 2900 39 330 41
CoCoME 4786 120 512 44
iTrust 28,133 423 3691 31

source code and the SecDFD element which is present in the
ground truth, but has not been identified.

RQ2. What is the impact of the user on the correctness of
mappings? The implementation automatically derives trivial
mappings from the user defined mappings, raising the recall
before a new iteration starts. Therefore, the impact of the
user defined mappings is measured as the difference in recall
before, and after the added mappings.

Execution The experiment was executed by the first and sec-
ond author. The authors worked on the projects individually
and compared their results at each step. First, the authors
created the SecDFDs for all five projects models manually.
To this aim, the authors inspected all available documenta-
tion (including the source code) and reverse engineered a
high-level architecture. Second, a ground truth was created
for each SecDFD by following the execution of the modeled
scenarios and manually mapping the executed methods and
transferred data to the processes and assets of the according
step. The ground truth is a JSON file with a list of correspon-
dence mappings between the elements of the SecDFD and
a uniquely identifiable location of the source code element.
Third, the implemented plugin was used to find the auto-
mated mappings in several iterations. Each iteration included
accepting, rejecting the automated mappings, and defining
mappings manually by highlighting elements in the source
code and specifying the corresponding SecDFD elements.
After each iteration, the precision and recall of the automated
mappings were logged.

Results This study shows promising results for guiding the
user in the discovery of compliance violations.

In particular, Table 2 shows measurements of high preci-
sion and recall only after a few iterations for realistic Java
projects. Each iteration consists of an automated, and a man-
ual (user input) phase. We present the precision and recall for
the automatically suggested mappings in each iteration. We
also depict the amount of manually accepted, user defined,
the sum of all accepted and user defined, rejected mappings,
and the impact of the user defined mappings on recall (in
that order). Notice that the later iterations make use of the
manually defined mappings.

RQI. We start by reporting the correctness of the auto-
mated mappings in the first iteration. The average precision
of the first iteration is 50.5%. On average, the recall of the

first iteration is 69.8%. Yet, both the precision and the recall
increase after the first iteration. On average, the final preci-
sion and recall of the automated phase are very good (87.2%
and 92%, respectively).

The average difference between the recall of the second
iteration and the the user-impacted recall of the first iteration
(last column in Table 2) is 4.5%. This means that on average,
the automated search was able to increase the recall between
the first and second iteration by 4.5%.

On the other hand, the average difference between the
user-impacted recall of the second iteration and the recall
of the third iteration is minimal. This means that, the auto-
mated search was not able to increase the recall significantly
between the second and third iteration.

RQ2. On average, the user accepted less (7) mappings
then they rejected (9.6) and defined only 2.6 mappings man-
ually. However, in three cases (jpetstore, ATM simulation,
Eclipse Secure Storage) the user accepted more mappings
then rejected. This means that the user could quickly scan the
suggested mappings and eliminate the ones that are obviously
wrong. Overall, adding a few mappings manually resulted
in a more fruitful next iteration. For instance, adding three
mappings manually in the first iteration of evaluating the
ATM simulation resulted in two new correct mappings (see
accepted mappings of the second iteration).

On average, the user impact on the recall was an increase
of 7.9%. This means that the users were indeed able to guide
the discovery of compliance violations. Further, the users had
alarger impact on increasing the recall in later iterations com-
pared to the automated search (7.9% vs 4.5%). Notice, that
on average 75% of all correct mappings (7 P) are suggested
to the user and do not have to be manually defined.

6.2 Evaluation of the SecDFD contract verification

In this section, we evaluate if the proposed contract checks
(Sect. 4.1) can effectively detect convergence, absence and
divergence between the planned security properties and the
implemented security mechanisms.

Design of study In this part of the evaluation, we focus on the
effectiveness of the SecDFD contract verification to answer
the following research question.

@ Springer

K. Tuma et al.

Table 2 Results of the mapping

after each iteration Project It. Automated Manual
Precision [%] Recall [%] Accept+u (D) Reject Recall [%](A)

jpetstore 1 56.1 51.1 23+3 26) 18 57.8 (+6.7)
2 96.4 60.0 143 (30) 1 66.7 (+6.7)
3 96.8 66.7 0+5 (35) 1 77.8 (+11.1)
4 97.4 82.2 2+3 (40) 1 88.9 (+6.7)
5 100 93.3 2+3 45) 0 100 (+6.7)

ATM simulation 1 72.0 40.0 18+3 2D 7 46.7 (+6.7)
2 67.6 51.1 2+5 28) 11 62.2 (+11.1)
3 70.5 68.9 3+5 36) 11 80.0 (+11.1)
4 76.6 80 0+4 40) 13 88.9 (+8.9)
5 95.5 93.3 2+3 45) 2 100 (+6.7)

Eclipse sec. storage 1 73.0 90.5 40+ 1 “41) 14 92.9 (+2.4)
2 67.7 100 1+0 42) 12 -

CoCoME 1 27.9 71.3 17+ 1 (18) 44 81.8 (+4.5)
2 86.4 90.5 1+1 (20) 2 90.9 (+0.4)
3 90.9 83.3 0+2 (22) 100 (+16.7)

iTrust 1 23.5 80.0 8+1) 26 90.0 (+10.0)
2 81.8 90.0 0+1 (10) 2 100 (+10.0)

RQI. How effective is the proposed approach in the ver-
ification of contracts? It is important to evaluate if the
proposed checks can effectively be used in the context of
realistic projects. To this aim, we have used open source
Java projects, as opposed to illustrative projects. Further, as
we are interested in the effectiveness of the proposed com-
pliance checks, we execute the evaluation for all process
contracts, encrypt, decrypt, forward, and join. We evaluate
the approach with perfectly compliant SecDFDs (i.e., veri-
fication results only include convergences, and there are no
absence or divergence violations) and with SecDFDs with
injected process contracts. In case of the fully compliant
SecDFDs, all the detected compliance violations are false
positives (FPs). Injecting the process contracts allows us to
measure expected compliance violations (e.g., an absence of
a join contract), which we mark as true positives (TPs). If
the expected compliance violation is not found (according to
the injected contract), we mark it as a false negative (FN).
Finally, if we find unexpected compliance violations we mark
them as false positives (FPs). As a term of measure, we adopt
the well-understood precision (7 P /(T P + F P)) and recall
(TP/(TP + FN)) of detected compliance violations.
Execution As subjects of this evaluation, we use two projects
from the introduced test corpus, the Eclipse secure stor-
age and iTrust. The other projects (i.e., jpetstore, ATM
simulation, and CoCoME) had less security specifications
publicly available. Also, some project implementations did
not include any encryption and were less interesting to ana-
lyze from the security perspective (e.g., ATM). For both
projects, we created one additional SecDFD. In what fol-

@ Springer

lows, we refer to the new SecDFDs as Eclipse 2 and iTrust
2. The two SecDFDs created for the study in Sect. 6.1 are
Eclipse 1 andiTrust 1. As the created SecDFDs (all four) have
been reverse engineered from the implementations, these are
perfectly compliant.

First, we apply the contract verification to the two projects.
We expect to detect no divergences or absences between the
SecDFD and the implementation. Afterward, we inject vio-
lations into the systems and check if these are detected. The
violations are injected by adding random contracts to the
SecDFDs that are not implemented. After every injection,
we execute the contract verification and check if the expected
violation has been detected, if additional false alarms have
been raised, or if expected convergences are not detected any
longer. We generate injections of all contract types (encrypt,
decrypt, forward, and join). Regardless of the contract type,
we inject all possible contracts that have not been specified
on the initial SecDFD.

New encrypt and decrypt contracts can be injected inde-
pendently of each other. An encrypt contract can be injected
to every process that has no encrypt contract in the initial
SecDFD and a decrypt contract to every process that has no
decrypt contract. Accordingly, it can happen that we inject
a decrypt contract to a process that has already an encrypt
contract and the other way around. For the injection of for-
ward and join contracts, we inject for every process of a
SecDFD all possible contracts that are not already specified.
To do so, we calculate all possible combinations with one
outgoing flow. To calculate the combinations, we consider
all incoming and outgoing assets. For instance, for a process

Checking security compliance between models and code

Table 3 Results of evaluating the cryptographic contracts verification

Eclipse iTrust Overall
I 2 1 2
TPs 12 48 59 70 189
FPs 0 0 0 0 0
FNs 0 0 11 0 11
precision 100% 100% 100% 100% 100%
recall 100% 100% 84.28% 100% 94.5%

Table 4 Results of evaluating the processing contracts verification

Eclipse iTrust Overall
1 2 1 2
TPs 1 29 55 67 152
FPs 0 28 1 10 39
FNs 14 29 23 14 80
precision 100% 50.88% 98.21% 87.01% 79.58%
recall 6.67% 50% 70.51% 82.71% 65.52%

with two incoming and two outgoing assets (and no speci-
fied forward, or join contract), we inject 6 possible contracts.
Every incoming asset can be forwarded to every outgoing
asset (4 forward contracts) and the pair of incoming assets
can be joined with both outgoing assets as target (2 join con-
tracts). If a combination is equivalent to an existing contract,
it is omitted.

Results The results of the evaluation are in favor of using
our approach to execute security compliance checks between
design and implementation.

For the execution of the verification on the fully com-
pliant SecDFDs, we achieved 100% precision and recall.
But, the effectiveness of the proposed contracts must also
be studied in the context of imperfectly mapped SecDFDs.
In what follows, we discuss the effectiveness of the approach
in detecting absences of specified contracts. Tables 3 and 4
depict the results of the contract verification based on the
injected contracts. We show the results per SecDFD and over-
all.

For evaluating the verification of encrypt and decrypt
contracts, we injected 200 additional encrypt and decrypt
contracts into the SecDFDs. Most injected contracts (except
11) were correctly detected as absent. The 11 undetected
absent contracts belong to the same SecDFD (of the iTrust
project). After investigating them, we noticed that all of them
have been injected into processes that already have an encrypt
or a decrypt contract. The reason for this defect is that the
project-specific specified signature (in the list of well-known
cryptographic operations) for encryption is also specified
for decryption. As iTrust uses a crypto-function on which
a parameter is used for specifying whether a encryption or

decryption should be performed, this is a correct classifica-
tion. Since we only check for at least one method call for
encrypt/decrypt, we cannot detect an absence in this partic-
ular case.

To evaluate the forward and join checks, we injected 232
contracts (all the possible contract types and combinations
for every process) into the SecDFDs. In contrast to the crypto-
graphic contracts verification, the results presented in Table 4
paint a more diverse picture. On the one hand, the processing
contracts verification reaches a very good precision (98.21%
and 87.01%) and recall (70.51% and 82.71%) on the iTrust
project. On the other hand, the verification performs slightly
worse when executed on the Eclipse secure storage project. In
addition, there is a huge difference between the two SecDFDs
on the Eclipse secure storage.

In particular, the verification did not work for the SecDFD
shown in Fig. 2 (Eclipse 1). There are two reasons for this
poor performance.

First, external entities are not part of the system and can-
not be mapped to elements from the system. For example,
the external entity Plugin in Fig. 2 represents an arbitrary
plugin installed into the Eclipse instance that is unknown to
the Eclipse secure storage. This arbitrary plugin accesses the
secure storage using a Java API specified on implementation
level. Similarly, the data can be stored in a cloud, to which
access is controlled via an API. In such cases, we attempt at
guessing possible incoming flows by considering, e.g., every
parameter of the methods mapped to a process as possible
source but also all returns of called methods that have not
been mapped to any process. For instance, the Get_value pro-
cess (Eclipse 1) is heavily interacting with an external entity
and data store which results in very many guesses weakening
the results.

Second, despite the reduction when extracting flows
(described in Sect. 4.1), the overlapping asset types caused
both FPs and FNs. In example, this communication of
Get_value is implemented by mainly using assets whose
mappings are overlapping (mainly strings). In general, rep-
resenting sensitive objects with string values is prevalent in
Eclipse secure storage. This also effected the performance of
the processing contracts verification on the second SecDFD
(Eclipse 2). Yet, the verification still achieves a recall and
precision of 50%. This happened because the asset types
of injected contracts overlapped with the asset types of the
implemented contracts. For instance, consider two existing
and fulfilled forwards of assets that are both mapped to the
type String. In Fig. 2 for instance, these are the forward of id
on the Get_value process and the forward of the data to encr.
data.’ In addition to these expected forwards, there are some
additional uses of strings that are not representing assets, e.g.,

> Note that the Get_value encrypts the data only if it is stored in plain,
else it forwards it.

@ Springer

K. Tuma et al.

a parameter representing a default value in the implementa-
tion of the Get_value process. Now, we inject a join of id and
data to encr. data.. As the default value is a guessed flow, we
could easily ignore it before this injection, but now it exactly
contributes to the injected join contract and we have to report
this contact as convergence. However, we cannot any longer
report the forward of data as convergence as the flow pattern
is now mapped to the injected join contract. Accordingly, we
now report a false divergence. In this case, at least the user
would have been warned about a violation, but the informa-
tion about the assets was not entirely correct.

As the iTrust project does not have as many overlapping
asset-type mappings and the SecDFDs have less external enti-
ties, the results are much better for this subject. Again, the
missed violations are mainly due to overlapping asset map-
pings.

Overall, the contract verification is fairly precise (80%)
and reaches the recall of more than 65%. Generally, the con-
tract verification works and is able to bridge the huge gap
between early design models and concrete implementations.
Though, it suffers from overlapping mappings. Also, miss-
ing API specification of the system (i.e., issue of mapping
external entities) has a negative impact on the performance
of the contract verification.

6.3 Evaluation of optimized data flow analysis

The purpose of this study is to evaluate whether using our
approach helps to reduce the number of false alarms raised
by an existing data flow analyzer.

Design of study We investigate the performance of an anal-
ysis with FlowDroid [5] initialized with project-specific
sources and sinks. To this aim, we built three configura-
tions of sources and sinks. Except in the first configuration
(PLAIN), we execute the analyzer for each SecDFD asset
separately. This experiment was conducted with two projects
from Table 1, namely, Eclipse Secure Storage [20] and iTrust
[43]. To the best of our knowledge, both projects are free of
data flow leaks. Therefore, all the reported leaks by the ana-
lyzer are by default labeled as false alarms (FPs). We pose
one research question.

RQI. To what extent can the mapped design model (with
our approach) be used to reduce the number of false alarms
raised by a data flow analyzer?

PLAIN. We execute the analyzer with the list of source
signatures shipped with FlowDroid [4,56](herein DEFAULT
SOURCES) and sink signatures (herein DEFAULT SINKS).
Apart from Java method signatures, this list contains sig-
natures of methods specific to Android source packages. We
removed such signatures to avoid unnecessarily searching
for them with FlowDroid. Note, that this reduced the list of
source signatures from 18,077 to 1,229 and sink signatures
from 8,315 to 1,310. As a result of this filtering, the Android

@ Springer

SQL database API (SQLite) was also removed. To analyze
Java projects, we manually added signatures from the Java
SQL API to the above list of sources and sinks.

PARTLY OPT. We execute the analyzer (for each confi-
dential asset) with project-specific source signatures (herein
SECDFD SOURCES) and DEFAULT SINKS. The SECDFD
SOURCES are extracted per SecDFD asset, as described in
Sect. 4. Note that the SECDFD SOURCES are extracted inde-
pendently, and therefore may not include any of the DEFAULT
SOURCES.

FuLLYy OPT. We execute the analyzer (for each confiden-
tial asset) with SECDFD SOURCES and without allowed sink
signatures (herein SECDFD SINKS). The list of allowed sink
signatures is extracted per SecDFD asset, as described in
Sect. 4. The SECDFD SINKS are obtained by removing the
allowed sink signatures from the DEFAULT SINKS.

The results are compared in only terms of the number of
FPs, as no actual leaks (TPs) exist in the analyzed projects.
In addition, we measure the number of extracted project-
specific source signatures, and the number of removed sink
signatures. A false alarm (FP) is a detected leak with a unique
pair of source and sink method signatures, regardless of
the access path where the leak is detected. The rationale
for counting unique signature pairs is that comparing access
paths would be computationally expensive and not useful for
the purpose of this study. For instance, consider an imple-
mentation of a function where the number of recursive calls
depends on a conditional. In this case, at least two access
paths (when the conditional evaluates to true and false)
are detected. But the DFD does not specify such level of
detail, thus we cannot distinguish between the access paths
of the detected data leaks. The false alarms are aggregated
per SecDFD, to enable comparison with the PLAIN configu-
ration.

As we execute the analysis for each SecDFD asset, we
measure the project specific sources and sinks in the same
manner. Specifically, to measure the number of project-
specific sources we count each discovered source signature
per SecDFD asset. Similarly, to observe the number of times
we are able to remove an allowed sink, we count each signa-
ture which has been removed for a unique asset.

Listing 1 Configuration of FlowDroid used in this study

Infoflow result = new Infoflow("" false, null)

result.setSootConfig ((options, config) -> {

config.setCallgraphAlgorithm(CallgraphAlgorithm
.AutomaticSelection) ;

config.setImplicitFlowMode (ImplicitFlowMode.
AllImplicitFlows) ;

config.setAliasingAlgorithm(AliasingAlgorithm.
FlowSensitive) ;

config.setStopAfterFirstKFlows (100) ;

)i

result.setTaintWrapper (new EasyTaintWrapper (
Collections.emptyMap()));

return result;

Checking security compliance between models and code

Plain Partly Opt. Fully Opt.
304
20 g
. —d
o 5 2
104 — i
2 501
©
3 204 g
° S—— 2
£ 101 @
5 N
50
r 304 d
. [————] .
O 20+ =
— =
o @
Q0 104 -
E —— E——
2 o
30
20 =
@
10 N
0_
FP FP FP

Fig.8 False alarms (FPs) raised by the analyzer after three configura-
tions of sources and sinks per SecDFD (Eclipse Secure Storage on top,
iTrust on bottom)

Table 5 Average false alarm reduction for the different configurations
(aggregated per project)

Configuration FPs on Eclipse FPs on iTrust Overall
Plain 15.65 2.7 9.18
Partly Opt. 945 (] 60%) 13.1 (1 485%) 11.28
Fully Opt. 595 (1 37%) 1.9 85%) 3.93
Total (62%) (1 30%) 57%)

Execution Both projects used in this study include two
SecDFDs, representing two different scenarios. Listing 1
shows how we configured FlowDroid for all our executions.
This configuration was set up to achieve the best perfor-
mance and most conservative analysis, in accordance with
the literature [3]. We configure FlowDroid to use the default
call-graph construction algorithm (SPARK). In addition, we
have enabled implicit flow tracking and flow-sensitive alias-
ing. Note that, without tracking implicit flows, FULLY OPT.
produces no false alarms, while PLAIN still reports many.
Finally, we limit the static analysis to the projects, exclud-
ing third-party libraries (line 11 in Listing 1), and stop the
analyzer after identifying 100 leaks per run. We have imple-
mented and executed the experiments using the JUnit Plugin
Test framework with a limit of 6 GB of memory consumption
(for each execution of the analyzer). The amount of allowed
memory and the maximum number of identified leaks were
determined empirically. We have executed random parts of
the experiment with different configurations repeatedly and
did not get different results.

Results Figure 8 shows the false alarms raised by the analyzer
after three configurations per SecDFD model. The average
number of false alarms is aggregated per project in Table 5,
and the change in the number of false alarms is presented. The
main takeaway of the evaluation is that using our approach we
were able to (a) extract project-specific sources of secret data,
and (b) reduce the number of false alarms (up to 62%) raised
by the data flow analyzer. First, we discuss the reduction
with only project-specific sources. Second, we discuss the
reduction with removing allowed sinks.

RQI. Our measurements from the PARTLY OPT. config-
uration show that deriving project-specific sources from the
SecDFD is possible and can reduce the number of FPs. For
instance, in case of Secure Storage we achieved an average
60% reduction in false alarms (Table 5). However, adding
project-specific sources can also lead to a rise in false alarms
(as observed on iTrust). The number of project-specific
sources is realistic considering the project size (i.e., 11 for
Secure Storage and 10 for iTrust). In addition, the project-
specific source methods are in fact accessing sensitive
resources (e.g., the org.eclipse.equinox.intern
al.security.storage. SecurePreferences.
get (String, String, SecurePreference
Container) : String is called when fetching the cashed
confidential credentials.) But, the derived sources depend
heavily on the mappings. Since iTrust is implemented with
the dynamic Java Server Pages, FlowDroid cannot analyze
the entire behavior of the program. Therefore, we are only
able to reduce the number of FPs after removing allowed
sinks.

We found that the number of FPs can be further reduced
by removing allowed sinks from the list of sinks passed to the
analyzer (FULLY OPT. configuration). We have been able to
remove 3 sinks (all from java . lang package) for Eclipse
Secure Storage and 36 sinks (all from java.sqgl package)
for the iTrust project. These sinks were included in the previ-
ous configurations, but were derived in this configuration as
allowed for certain SecDFD assets. In particular, we observed
a further 37% average reduction in FPs for the Eclipse Secure
Storage project, when comparing the analysis results to the
previous configuration (PARTLY OPT.). Compared to the
first configuration (PLAIN), considering only project-specific
sources and removing allowed sinks reduced the number of
false alarms on average by 62%. As project-specific sources
were hard to find for the iTrust project, we compare the anal-
ysis results to the initial configuration (PLAIN). Removing
the allowed sinks in iTrust reduced the number of FPs on
average by 30%.

7 Discussion and threats to validity

This section discusses the results and examines the threats to
validity of the proposed approach.

@ Springer

K. Tuma et al.

7.1 Discussion

Generalizability In the domain of safety critical systems,
reliability requirements are highly prioritized and organiza-
tions have mature compliance processes in place. In contrast
to security, reliability engineers analyze how the system
behaves in case of failures. However, the semi-automated
mappings (and the accompanying tool support) are general
enough and could be used as a foundation to develop com-
pliance checking for reliability and safety properties. For
example, the implementation of processes with outgoing data
flows can be checked to never return data with null fields. In
addition, the approach could be extended to support compli-
ance analyses of real-time properties of distributed systems,
such as liveliness (the implementation could be checked
for unbound loops). Similarly, compliance to performance
requirements could be checked by tracing the implemented
information flows and analyzing their distribution. Though,
besides the application code, additional sources of infor-
mation about the deployment (e.g., network policies) and
runtime information may be required for comparing the
intended levels of performance to actual computing load.
The security analysis (Sect. 4) could also be extended to
check compliance of infegrity as a dual to confidentiality
[10] (instead of confidential sources, the developer needs to
specify the trusted sources and sinks). Further, our approach
can be extended to support compliance analysis of account-
ability requirements of asset manipulations (as stipulated by
the design) with respect to the implemented logging mecha-
nisms.
Algorithm complexity Worse case complexity of the heuris-
tic algorithm for finding the mappings is exponential; how-
ever, the SecDFD models are much smaller compared to the
program model. Also, the rules for corresponding elements
(Sect. 3.1) significantly reduce the search complexity. In con-
trast to the implementation of forward and join checks, the
complexity of checking an encrypt/decrypt contract is linear.
Though a complete complexity analysis of the forward and
join checks was not conducted, we observed that the number
of types, members, and accesses are the most influential fac-
tors. The reader should note that we do not attempt to trace
the entire implementation, but only targets of the mappings
(smaller chunks); therefore, the runtime complexity of the
checks is fair, also for realistic-sized applications.
Scalability Our evaluation of the mappings suggests no
major scalability issues when applying the approach to realis-
tic applications. The user seldom defined mappings manually
(on average, 75% of mappings were suggested by the algo-
rithm) and in most applications, accepted more mappings
than rejected. In principle, the approach could still be used
with some unaccepted mappings. Not accepting correct map-
pings would prevent the algorithm in further exploring the

@ Springer

search space, but the exact impact on the precision and recall
must be further investigated.

7.2 Threats to validity

The main threat to external validity is our selection of sam-
ples, based on a limited number of open source projects,
partially originating from a teaching context. Regarding the
validity of the studies conducted to evaluate the security
compliance checks, the open source projects do not contain
well-known data flow leaks, thus we consider them secure.
The rationale for our selection was the manual effort that was
required for creating the ground truth of our technique, a full
mapping between high-level DFD elements and low-level
program elements. However, as a result, the generalizability
of the results to larger project in other domains is limited. To
mitigate this threat, the considered projects were chosen to
be representative for realistic projects by providing a good
documentation, including architectural information (such as,
wikis, use cases, scenarios, requirements, state charts, and the
like). The available documentation enabled building good
design models, close to the intended architecture. Further,
we partly mitigate this threat by experimenting with contract
injections as part of our evaluation. We plan to extend the
evaluation in the future to include a more comprehensive set
of projects.

Regarding internal validity, the main threat of our evalua-
tion is researcher bias. In the absence of pre-existing ground
truths and design models, the ground truth and design mod-
els for our evaluation were created manually by the authors,
possibly introducing arisk of creating a biased result. To miti-
gate this threat, the ground truths and the design-level models
were carefully discussed between all authors. The created
models and ground truths are of similar size and complexity
and are available online [53].

With respect to construct validity, we consider the threat
of misinterpreting divergence, absence, and convergence
compliance violations in the context of design-level mod-
els, implementation-level models, and violations detected by
static code analysis. However, to the best of our knowledge,
our interpretations are in-line with the existing literature [15].

8 Related work

First, we discuss two most related works with respect to
security compliance of DFDs, and leveraging specifications
to optimize data flow analysis. Similar to our work, these
approaches are difficult to classify as forward or reverse engi-
neering solutions. Next, we position our work in the context
of forward and reverse engineering literature.

More than a decade ago, Abi-Antoun et al. [2] proposed
conformance checks between the implementation and DFDs.

Checking security compliance between models and code

The authors automatically extract a DFD (i.e., the source
DFD) from the implementation. Next, the user specifies a
mapping (using Reflexion Models) between a manually cre-
ated high-level DFD and the source DFD, which is then
used to uncover inconsistencies. The notion of extracting
the source DFD is similar to our extraction of the imple-
mented data flows. In contrast to the mappings with Reflexion
Models, our mappings are semi-automated using heuristics.
Further, the security analysis in [2] is performed on the level
of the DFD, while our security compliance checks are devel-
oped by means of static code analysis. To the best of our
knowledge, this work is the sole attempt at implementing
security compliance checks between the SecDFD and its
implementation.

Recently, static code analysis techniques have been devel-
oped to assure GDPR compliance of the implemented
systems with respect to privacy specifications [24,26,31].
Most relevant to our work is the proposed approach by Fer-
rara et al. [26] which uses the privacy policy to fine tune and
execute a taint analysis. The authors evaluate the approach
by executing a prototype analysis on a benchmark applica-
tion. Deriving the sources and sinks from the privacy policy
is similar to our idea of maintaining allowed sinks for each
SecDFD asset. But, the required GDPR policy needs to be
specified on the level of implementation (e.g., concrete fields
as sources, and API method signatures for sinks). In contrast,
our approach can derive project-specific sources and allowed
sinks from the design and also performs security compliance
checks with respect to the design model.

UML models have been extensively studied in the con-
text of forward engineering solutions for checking security
compliance.

Muntean et al. [44] extend the UML statecharts with
security annotations (such as source function, sink function,
declassified parameter, etc.), generate the source code in C,
and implement static checks (using the Smtcodan engine) to
detect data flow violations. Similar to our work, the authors
leverage security information from the design to execute a
static analysis, and lift the detected violations back to the
user (they display them with sequence diagrams). However,
compared to DFDs, the gap between statecharts and source
code is smaller (e.g., DFDs can not express conditional data
flows, or sequence of data flows). Further, our approach with
correspondence mappings can be used on existing projects
(no code generation is necessary).

IFlow [35] is an approach for specifying and analyzing
information flow properties in distributed Java applications.
The proposed approach extends the UML model with infor-
mation flow properties and uses it to generate a Java code
skeleton, and transform it to a formal model supporting
an interactive theorem prover. The Java code skeleton (and
manually completed program) can be checked for standard
information flow properties, such as non-interference, using

an existing framework (i.e., JOANA). Similar to this work,
IFlow requires the developer to provide the security informa-
tion in the model and leverages an existing static analyzer.
But, IFlow is model-driven and analyzes non-interference in
a more formal setting.

Fourneret et al. [27] combine model-based security analy-
ses using UMLsec [34] with the generation of security tests.
Security properties are specified and verified on UML state
machines. These models are then used to generate tests for
the implemented system. In contrast to us, the considered
state machines have to be very close to the implementation.
Further, Ramadan et al. [55] use model transformation to
automatically generate security-annotated UML class mod-
els [34] from security-annotated BPMN models.

For the classical reverse engineering scenario from
source code to UML class models, Peldszus et al. [51] prop-
agate hand-crafted security annotations from source code to
the corresponding elements in automatically extracted class
models.

Scoria [69] is a semi-automated approach for extracting
and analyzing the Owner Object Graph annotated with secu-
rity properties (i.e., SecGraph) to find security flaws in the
architecture. First, The SecGraph is extracted from a manu-
ally annotated implementation. Second, software architects
can optionally refine the SecGraph with additional anno-
tations. Finally, software architects can design queries to
analyze the SecGraph. Similar to our work, Scoria is an
iterative semi-automated approach analyzing security on
abstracted code representation. However, our work does not
rely on code annotations and executes the security compli-
ance checks by means of static analysis.

Jasser [32] recently proposed an approach for analyzing
system behavior and detecting its discordance with a set of
useful security rules. The security rules (modeled as Linear
Time Logic (LTL) properties) are expressed with a controlled
natural language for describing architectural constraints. The
system behavior is extracted by means of dynamic analy-
sis, using aspect-oriented programming. Finally, before the
security rules can be executed, the source-level elements are
manually mapped to the architectural elements. On a high-
level, the idea of our work relates Jassers approach, in that, an
abstracted representation of code is mapped to a higher-level
model to analyze security compliance. In comparison, our
approach supports an automated discovery of such mapping
and studies the compliance of static security properties in the
implementation.

Manual security reviews can be aided by automated static
(or hybrid) program analysis. Static Application Security
Testing (SAST) [25] tools aim to analyze the program code
of a software component and automatically report the viola-
tions to developers, removing the need for security experts
reviewing large code bases. Our approach relates to such
mechanisms in that it leverages static code analysis to eval-

@ Springer

K. Tuma et al.

uate security of an implemented system. But, the SAST
analyzes security of the implementation, while our approach
focuses on analyzing the compliance of implemented secu-
rity to the intended (designed) security. Further, SAST tools
need to still be configured by security experts, whereas our
approach automatically derives project-specific sources and
sinks from the SecDFD model.

Duarte et al. [19] propose to use context information
of execution sequences for the extraction of labeled tran-
sition system models from source code. While the authors
motivate their approach with the need for correspondence
between models and code, they only discuss the possibility
to analyze the models using existing tooling. The compli-
ance checks introduced by Duarte et al. [19] are performed
similarly to the checks developed in this work. In contrast,
our approach supports compliance checks between models
and code. Regarding the preparation for compliance checks,
Duarte et al. reverse engineer models that can be checked or
compared to existing models. In contrast, we recreate a map-
ping between existing models and their implementation. This
already includes a comparison with the existing models.

Beyond the security scope of this work, conformance
checking is generally a well-studied topic in model-driven
engineering. Paige et al. [46] use meta-models as the com-
mon reference point to enable conformance checks between
diagrams representing different views on a system. Diskin et
al. [17] present a framework for global consistency checks of
heterogeneous models based on constraints. By supporting
the explicit specification of overlaps between the consid-
ered models, they avoid the need for a global meta-model.
Expanding on this work, Kénig and Diskin [37] improve the
efficiency of this approach by supporting an early localiza-
tion of relevant parts of the models whose consistency is
to be checked. Reder and Egyed [57] propose an efficient
approach to consistency checking based on predefined con-
sistency rules. Estanol et al. [22] developed an approach to
check the conformance of process implementation to UML
and OCL models by translating them into petri-nets, and exe-
cuting existing conformance checking techniques. However,
none of these works address security compliance checking
between design and its implementation.

9 Conclusion and future work

This work has introduced a novel approach for tackling the
problem of automating the code-level verification of planned
security mechanisms. In particular, we have developed a
solution with tool support for executing security compli-
ance checks between an abstract design model (the SecDFD)
and its implementation (in Java). To this aim, we developed
a user-in-the-loop approach for finding corresponding ele-
ments based on heuristically computed suggestions. Once

@ Springer

defined, the correspondence mappings are leveraged for an
automated security analysis of the implementation against
the design. First, two types of security compliance checks
are executed: a rule-based check for a set of cryptographic
operations, and a local data flow check for data processing
contracts specified in the model. Second, the mapped design
is leveraged to initialize and execute a state-of-the-art data
flow analyzer over the entire Java project. The results of the
compliance checks (convergence, absence, and divergence)
are lifted to the attention of the user via the user interface of
our tool.

Our approach was evaluated with three experiments on
open source Java projects (five in the first experiment and
two in the second and third), focused on assessing the per-
formance from different angles. First, our evaluation has
shown a high precision (87.2%) of the automated sugges-
tions of mappings. Second, the rule-based security compli-
ance checks are very precise (100%) and rarely overlook
implemented cryptographic operations (recall is 94.5%). In
addition, the local data flow checks are fairly precise (79.6%),
but may overlook some implemented flows (recall is 65.6%),
due to the large gap between the design and implementation.
Finally, our approach enables a project-specific data flow
analysis with up to 62% less false alarms.

Regarding future improvements, we note that extending
the SecDFD with strongly typed assets could improve the
performance of the security compliance checks. Strongly
typed SecDFD assets could be mapped to the implementation
more precisely, which would make the local data flow checks
cleaner. In addition, the missing mappings to the external
entities could be better approximated by relying on parsed
API specifications (e.g, JavaDoc). Finally, the evaluation of
the security checks could be improved by including more
open source projects, especially projects with well-known
data leaks.

Acknowledgements The work presented in this article is part of the
Ph.D. theses of Katja Tuma [65] and Sven Peldszus [47]. This research
was partially supported by Deutscher Akademischer Austauschdienst
(DAAD), the H2020- projects AssureMOSS (grant agreement No
952647), TRUSTS and Qud4lity that received funding from the Euro-
pean Union’s Horizon 2020 research and innovation programme, and
the BMWi-project IIP Ecosphere. This paper reflects only the author’s
view and the Commission is not responsible for any use that may be
made of the information contained therein.

Open Access This article is licensed under a Creative Commons
Attribution 4.0 International License, which permits use, sharing, adap-
tation, distribution and reproduction in any medium or format, as
long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons licence, and indi-
cate if changes were made. The images or other third party material
in this article are included in the article’s Creative Commons licence,
unless indicated otherwise in a credit line to the material. If material
is not included in the article’s Creative Commons licence and your
intended use is not permitted by statutory regulation or exceeds the
permitted use, you will need to obtain permission directly from the copy-

Checking security compliance between models and code

kv YQ i I®S

= B | [J) SecurePreferencesWrapper.java 52

2018 IBM Co

< 2® * Copyright (c) 2008,

~ & org.eclipse.equinox.security |f

» =\ JRE System Library [JavaS!
» =\ Plug-in Dependencies

16® import java.io.IOException;

v &8 src 0 2
» # org.eclipse.equinox.inte 21 * Thi 1SS ymbine ecure prefer
» # org.eclipse.equinox.inte
» # org.eclipse.equinox.inte
» i org.eclipse.equinox.inte
» # org.eclipse.equinox.inte
~ i org.eclipse.equinox.inte
» [J] Base64.java
[3) callbacksProvider.ja\ 5
[J) CryptoData.java - R -
7] JavaEncryption.java
J) PasswordExt.java
7] PasswordManageme
[J) PasswordProviderM¢
[3) PasswordProviderSe
[3] PersistedPath.java
[J] SecurePreferences.ja
1) SecurePreferencesM

-

¥ suggested
» Asset: fieldID
¥ Process: Get_Password_External

vy v vy v vvvwvow

rporat
package org.eclipse.equinox.internal.securit)

public class SecurePreferencesWrapper implem
final protected SecurePreferences node;

final protected SecurePreferencesContaine

& Console | 3+ call Hierarchy‘ [GRaViTY SecDFD Mappings X | [] GRaViTY SecDFD Selection

e 3 QuickAccess |i| B & &
=T o= Outline | |8 storepassword.mydsl £2 = 0
Tor source: rina_noue

targets: Cache

elements:
ExternalEntity 0S User|

assets: password external
outgoing flows: user external password [num
attacker: false

1,
ExternalEntity Plugin|
assets: path secre(

"Get value.return secret fr
"Decrypt data.return decryp
get password [num: 1 assets

incoming flows

outgoing flows:
attacker: false
- 1

Continue Acceptall ¥ = 0O

Member Definition: org.eclipse.equinox.internal.security.storage.SecurePreferencesRoot.getModulePassword(String, IPrefe

Member Definition: org.eclipse.equinox.internal.security.storage.SecurePreferencesRoot.getPassword(String, IPreferences(

(a) UI with the textual syntax

(mi e PYCRET ¥ 0 #G OB YO e
[2 Package Explorer 53 =g
sy | [securepreferences.java %2
SecurePreferences result = this;
while (result.parent() != null)
» B, Plug-in Dependencies result = result.parent();
vifsrc root = (SecurePreferencesRoot) result;
» & org.eclipse.equinox.internal.¢
» i org.eclipse.equinox.internal.¢
» 3 org.eclipse.equine
» i org.eclipse.e
» i org.eclipse.ex
 if org eclipse.equinox internal.c
» [/} Base6d java
» [} CallbacksProviderjava
» [l‘) CryptoData.java

viz4> org.eclipse.equinox.security
» =\, JRE System Library

return root;

if (pathName == null || pathName.length() == @)
return this;

int pos = pathName.indexOf(IPath.SEPARATOR);

if (pos ==r-1)

» [7) PasswordManagement jav return getChild(pathName, create);
) PasswordProviderModulef
sswordProviderSelector
rsistedPath java
curePreferences.java . f :
curePrefarencesConti String topSegment = pathName.substring(@, pos);
curePreferencesMappe!
curePreferencesRoot ja
» [1) SecurePreferencesWrappe
» [} SlashEncode java
rageUtils java

if (child == null && !create)
return null;

» # org.eclipse.equinox.internal.¢ }
» & org.eclipse.equinox.internal.¢

» i org.eclipse.equinox.security.: }
» i org.eclipse.equinox.security.:
» i org.eclipse.equinox.security.s

» # org.eclipse.equinox.security.: = problems « Javadoc () Declaration [] GRaVITY SecDFD Mappings 52
» & org.eclipse.equinox.security.

» Egroundtruth ¥ storepassword

» Gylog » suggested

» E5 META-INF » userdefined

» &3 > report. vaccepted

» g schema > Process: Get_Password_External

» 5> secdfds » Asset: password_external

» 3> temp » Asset: path

e protected SecurePreferences navigateToNode(String pathName, boolez

else if (pos == @) // if path requested is absolute, pass it t
return getRoot().navigateToNode(pathName.substring(1), cre
else { // if path requested contains segments, isolate top sec

String otherSegments = pathName.substring(pos + 1);
SecurePreferences child = getChild(topSegment, create);

return child.navigateToNode(otherSegments, create);

Qs nE
& new extendedDFD 53

eoriaviliv Ny 212 &v » @ q

4 [password_external]

.- . Get_Passwol
d_External
: [secret]
vl

a 4 [node, ieldiD) 4 (password_extemal

% o + [path]
«> Fmd node 4 Plugin |

+ [data, encrypted_data)
4 Cache 4 [fieldiD, node]

| 4 05_User

>

o Acceptall Rejectall Check process contracts § = £

(b) UI with the graphical syntax

Fig.9 Screenshots of the Ul in Eclipse

right holder. To view a copy of this licence, visit http://creativecomm
ons.org/licenses/by/4.0/.

A Using the tool

The target audience of the tool are software developers with
training in the principles of software architecture. After the
installation of the required packages, the program is started
as a running Eclipse instance. First, the developers import
the desired Java project. Second, they manually create one
or several SecDFDs for representing the high-level archi-
tecture and security properties of the project. They can do

so with a textual or graphical syntax (one can be generated
from the other). Figure 9 shows screenshots of the user inter-
face after this step is completed. On the left hand side of
the figures, users can see the Package Explorer. The top two
windows are used for displaying the source code (left) and
the SecDFD (right). The bottom windows are used for dis-
playing and defining the mappings. Next, using context menu
entries, the developers trigger the automated generation of a
PM from the source code, and start the first iteration of the
semi-automated process for mapping the SecDFD elements
to source code elements (see Sect. 3).

At the start of each iteration, the developers are shown
a list of suggested mappings. Since one DFD element is

@ Springer

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/

K. Tuma et al.

usually mapped to several program elements, the results are
grouped by the DFD elements. For each DFD element, the
list of mapped PM elements is shown, each with its path in
the source code. The developers can interact with the tool
by accepting, rejecting, and manually defining mappings. A
suggested mapping is accepted or rejected with a right-click
on the entry and selecting accept or reject, respectively. Once
amapping is accepted, corresponding in-line markers are cre-
ated on the SecDFD and in the source code. Double-clicking
a mapping will open the correct source file and navigate to
the correct line in the file. Accepted mappings can always
be rejected. If all the suggested mappings are correct, the
developers can select accept all. Rejected mappings will
never be suggested again. Manual definition works by right-
clicking and selecting Map Selection to SecDFD on source
code elements. At the end of the iteration, developers can
either stop or select continue to trigger a new search refining
the present mapping.

Finally, the developers can execute security compliance
checks by pressing a button. The contract violations and leaks
identified by FlowDroid are presented to the user with error
and warning markers on the SecDFD model. At any moment,
the developers can extend the list of project-specific meth-
ods signatures for cryptographic operations, and execute the
checks again. Similar to manual definition, they can right-
click the source code elements and select the appropriate
menu item.

References

1. Abe, T., Hayashi, S., Saeki, M.: Modeling security threat patterns
to derive negative scenarios. In: APSEC, pp. 58-66 (2013)

2. Abi-Antoun, M., Wang, D., Torr, P.: Checking threat modeling data
flow diagrams for implementation conformance and security. In:
ASE, pp. 393-396 (2007)

3. Arzt, S.: Static data flow analysis for android applications. Ph.D.
thesis, Technische Universitidt Darmstadt (2017)

4. Arzt, S., Rasthofer, S., Bodden, E.: SuSi: a tool for the fully auto-
mated classification and categorization of android sources and
sinks. Tech. Rep. TUDCS-2013-0114, University of Darmstadt
(2013)

5. Arzt, S., Rasthofer, S., Fritz, C., Bodden, E., Bartel, A., Klein, J., Le
Traon, Y., Octeau, D., McDaniel, P.: Flowdroid: precise context,
flow, field, object-sensitive and lifecycle-aware taint analysis for
android apps. ACM Sigplan Notices 49(6), 259-269 (2014)

6. Axway Software, BizAgi Ltd, Bruce Silver Associates, IDS
Scheer, International Business Machinesand MEGA International,
Model Driven Solutions, Object Management Group, Oracle, SAP
AG, Software AG Inc, TIBCO, Unisys (2014) Business Process
Model And Notation (BPMN). OMG Standard formal/13-12-09,
Object Management Group (OMG), version 2.0.2

7. Baca, D., Petersen, K., Carlsson, B., Lundberg, L.: Static code
analysis to detect software security vulnerabilities-does experience
matter? In: ARES, pp. 804-810. IEEE (2009)

8. Berger, B.J., Sohr, K., Koschke, R.: Extracting and analyzing the
implemented security architecture of business applications. In:
CSMR, pp. 285-294 (2013)

@ Springer

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

217.

28.

29.

30.

31.

32.

. Bernsmed, K., Jaatun, M.G.: Threat modelling and agile software

development: identified practice in four Norwegian Organisations.
In: Cyber Security, pp. 1-8. IEEE (2019)

Biba, K.J.: Integrity considerations for secure computer systems.
Tech. rep., MITRE CORP, Bedford, MA (1977)

Bjork, R.C.: ATMExample. http://www.math-cs.gordon.edu/
local/courses/cs211/ATMExample/ (2020)

Bodden, E.: Inter-procedural Data-flow Analysis with ifds/ide and
Soot. In: SOAP, pp. 3-8 (2012)

Biirger, J., Striiber, D., Gértner, S., Ruhroth, T., Jiirjens, J., Schnei-
der, K.: A framework for semi-automated co-evolution of security
knowledge and system models. JSS 139, 142-160 (2018)

Cook, S., Bock, C., Rivett, P, Rutt, T., Seidewitz, E., Selic, B.,
Tolbert, D.: UML Superstructure Specification. OMG Standard
formal/2017-12-05, Object Management Group (OMG), version
2.5.1(2017)

De Silva, L., Balasubramaniam, D.: Controlling software architec-
ture erosion: a survey. JSS 85(1), 132-151 (2012)

Deng, M., Wuyts, K., Scandariato, R., Preneel, B., Joosen, W.: A
privacy threat analysis framework: supporting the elicitation and
fulfillment of privacy requirements. RE 16(1), 3-32 (2011)
Diskin, Z., Xiong, Y., Czarnecki, K.: Specifying overlaps of het-
erogeneous models for global consistency checking. In: Models,
pp. 165-179 (2010)

Dougherty, C., Sayre, K., Seacord, R.C., Svoboda, D., Togashi,
K.: Secure design patterns. Tech. rep., Carnegie-Mellon University
Pittsburgh, Software Engineering Institute (2009)

Duarte, L.M., Kramer, J., Uchitel, S.: Using contexts to extract
models from code. SoSyM 16, 523-557 (2017)

Eclipse Contributors. Eclipse Documentation—Secure Stor-
age. https://help.eclipse.org/2020-06/topic/org.eclipse.platform.
doc.user/reference/ref-securestorage-start.htm (2020)

Ehrig, H., Rozenberg, G., Kreowski, H.J.: Handbook of Graph
Grammars and Computing by Graph Transformation, vol. 3. World
Scientific, Singapore (1999)

Estafiol, M., Munoz-Gama, J., Carmona, J., Teniente, E.: Confor-
mance checking in uml artifact-centric business process models.
SoSyM 18(4), 2531-2555 (2019)

Faily, S., Scandariato, R., Shostack, A., Sion, L., Ki-Aries, D.:
Contextualisation of data flow diagrams for security analysis. In:
GraMSec, pp. 186-197 (2020)

Fan, M., Yu, L., Chen, S., Zhou, H., Luo, X., Li, S., Liu, Y., Liu, J.,
Liu, T.: An empirical evaluation of GDPR compliance violations
in android mHealth apps. In: ISSRE, pp. 253-264 (2020)
Felderer, M., Biichler, M., Johns, M., Brucker, A.D., Breu, R.,
Pretschner, A.: Security testing: a survey. In: Advances in Com-
puters, vol. 101, pp 1-51. Elsevier (2016)

Ferrara, P., Olivieri, L., Spoto, F.: Tailoring taint analysis to GDPR.
In: APF, pp. 63-76. Springer (2018)

Fourneret, E., Ochoa, M., Bouquet, F., Botella, J., Jurjens, J.,
Yousefi, P.: Model-based security verification and testing for smart-
cards. In: ARES, pp. 272-279 (2011)

Goseva-Popstojanova, K., Perhinschi, A.: On the capability of static
code analysis to detect security vulnerabilities. IST 68, 18-33
(2015)

Hebig, R., Quang, T.H., Chaudron, M.R., Robles, G., Fernandez,
M.A.: The quest for open source projects that use UML: mining
GitHub. In: Models, pp. 173-183 (2016)

Heinrich, R., Rostami, K., Reussner, R.: The Cocome platform for
collaborative empirical research on information system evolution.
Tech. Rep. 2016,2, Karlsruhe Institute of Technology (2016)
Hjerppe, K., Ruohonen, J., Leppinen, V.: Annotation-based static
analysis for personal data protection. In: IFIP, pp. 343-358.
Springer (2019)

Jasser, S.: Enforcing architectural security decisions. In: ICSA, pp
35-45. IEEE (2020)

http://www.math-cs.gordon.edu/local/courses/cs211/ATMExample/
http://www.math-cs.gordon.edu/local/courses/cs211/ATMExample/
https://help.eclipse.org/2020-06/topic/org.eclipse.platform.doc.user/reference/ref-securestorage-start.htm
https://help.eclipse.org/2020-06/topic/org.eclipse.platform.doc.user/reference/ref-securestorage-start.htm

Checking security compliance between models and code

33.

34.

35.

36.

37.

38.

39.

40.

41.

42.

43.

44,

45.
46.

47.

48.

49.

50.

51.

52.

53.

54.

55.

56.

57.

58.

Jung, R., Heinrich, R., Taspolatoglu, E., Poppke, T.: CoCoME.
https://github.com/cocome-community-case-study (2020)
Jiirjens, J.: Secure Systems Development with UML. Springer,
Berlin (2005)

Katkalov, K., Stenzel, K., Borek, M., Reif, W.: Model-driven
development of information flow-secure systems with IFlow. In:
SocialCom, pp. 51-56. IEEE (2013)

Klieber, W., Flynn, L., Bhosale, A., Jia, L., Bauer, L.: Android taint
flow analysis for app sets. In: SOAP, pp. 1-6 (2014)

Konig, H., Diskin, Z.: Efficient consistency checking of interrelated
models. In: ECMFA, pp. 161-178 (2017)

Levenshtein, V.I.: Binary codes capable of correcting deletions,
insertions, and reversals. Sov. Phys. Dokl. 10(8), 707-710 (1966)
Li, L., Bissyandé, T.F., Papadakis, M., Rasthofer, S., Bartel, A.,
Octeau, D., Klein, J., Traon, L.: Static analysis of android apps: a
systematic literature review. IST 88, 67-95 (2017)

Lund, M.S., Solhaug, B., Stglen, K.: Model-Driven Risk Analysis:
The Coras Approach. Springer, Berlin (2011)

Macher, G., Armengaud, E., Brenner, E., Kreiner, C.: A review
of threat analysis and risk assessment methods in the automotive
context. In: SAFECOMP, pp. 130-141 (2016)

Mebus, D.: Objektorientierte high-level Datenflussanalyse. Mas-
ter’s thesis, University of Koblenz-Landau (2019)

Meneely, A., Smith, B., Williams, L.: iTrust electronic health care
system case study. https://github.com/ncsu-csc326/iTrust (2020)
Muntean, P., Rabbi, A., Ibing, A., Eckert, C.: Automated detection
of information flow vulnerabilities in UML state charts and C code.
In: QRS-C, pp. 128-137. IEEE (2015)

MyBatis. JPetStore. http://www.mybatis.org/jpetstore-6/ (2020)
Paige, R.F., Brooke, P.J., Ostroff, J.S.: Metamodel-based model
conformance and multiview consistency checking. TOSEM 16(3),
11 (2007)

Peldszus S (2021) Security compliance in model driven develop-
ment of software systems in presence of long-term evolution and
variants. PhD thesis, University of Koblenz-Landau

Peldszus, S., Kulcsar, G., Lochau, M.: A solution to the Java refac-
toring case study using eMoflon. In: TTC, pp. 118-122 (2015)
Peldszus, S., Kulcsar, G., Lochau, M., Schulze, S.: Incremental
co-evolution of Java programs based on bidirectional graph trans-
formation. In: PPPJ, pp. 138-151 (2015)

Peldszus, S., Kulcsar, G., Lochau, M., Schulze, S.: Continuous
detection of design flaws in evolving object-oriented programs
using incremental multi-pattern matching. In: ASE (2016)
Peldszus, S., Striiber, D., Jiirjens, J.: Model-based security analysis
of feature-oriented software product lines. In: GPCE (2018)
Peldszus, S., Tuma, K., Striiber, D., Jiirjens, J., Scandariato, R.:
Secure data-flow compliance checks between models and code
based on automated mappings. In: Models, pp. 23-33. IEEE (2019)
Peldszus, S., Tuma, K., Striiber, D., Scandariato, R., Jiir-
jens, J.: Implementation and evaluation data. https://github.com/
SvenPeldszus/GRaViTY-SecDFD-Mapping (2020)

Peldszus, S., et al.: GRaViTY program model. http://gravity-tool.
org (2020)

Ramadan, Q., Salnitri, M., Striiber, D., Jiirjens, J., Giorgini, P.:
From secure business process modeling to design-level security
verification. In: Models, pp. 123-133 (2017)

Rasthofer, S., Arzt, S., Bodden, E.: A Machine-learning approach
for classifying and categorizing android sources and sinks. In:
NDSS Symposium (2014)

Reder, A., Egyed, A.: Incremental consistency checking for com-
plex design rules and larger model changes. In: Models, pp.
202-218 (2012)

Ruland, S., Kulcsar, G., Leblebici, E., Peldszus, S., Lochau, M.:
Controlling the attack surface of object-oriented refactorings. In:
FASE, pp. 38-55 (2018)

59.

60.

61.

62.

63.

64.

65.

66.

67.

68.

69.

70.

Saini, V., Duan, Q., Paruchuri, V.: Threat modeling using attack
trees. CCSC 23(4), 124-131 (2008)

Santos, J.C.S., Tarrit, K., Mirakhorli, M.: A catalog of secu-
rity architecture weaknesses. In: Proceedings of the International
Conference on Software Architecture Workshops (ICSAW), pp.
220-223. IEEE Computer Society (2017). https://doi.org/10.1109/
ICSAW.2017.25

Scandariato, R., Wuyts, K., Joosen, W.: A descriptive study of
Microsoft’s threat modeling technique. RE 20(2), 163-180 (2015)
Shostack, A.: Threat Modeling: Designing for Security. Wiley,
Hoboken (2014)

Sion, L., Yskout, K., Van Landuyt, D., Joosen, W.: Solution-aware
data flow diagrams for security threat modeling. In: SAC, pp. 1425—
1432 (2018)

Tuma, K., Scandariato, R.: Two architectural threat analysis tech-
niques compared. In: ECSA, pp. 347-363 (2018)

Tuma K (2021) Efficiency and Automation in Threat Analysis of
Software Systems. PhD thesis, Chalmers University of Technology
and Gothenburg University

Tuma, K., Calikli, G., Scandariato, R.: Threat analysis of software
systems: A systematic literature review. JSS 144, 275-294 (2018)
Tuma, K., Balliu, M., Scandariato, R.: Flaws in flows: unveiling
design flaws via information flow analysis. In: ICSA, pp. 191-200
(2019)

Vallee-Rai, R., Hendren, L.J.: Jimple: simplifying Java bytecode
for analyses and transformations. Tech. rep., McGill University
(1998)

Vanciu, R., Abi-Antoun, M.: Finding architectural flaws using con-
straints. In: ASE, pp. 334-344. IEEE (2013)

Wolf, T., Dahyabhai, N., Sohn, M., et al.: EGit—user guide. https://
wiki.eclipse.org/EGit/User_Guide (2019)

Publisher’s Note Springer Nature remains neutral with regard to juris-
dictional claims in published maps and institutional affiliations.

Katja Tuma is an assistant pro-
fessor at the Vrije University in
Amsterdam. She obtained her
Ph.D. in Computer Science and
Engineering from the University
of Gothenburg in Sweden. Katja
has collaborated with several
research groups (e.g., at KTH, KU
Leuven, and University of
Koblenz-Landau) and has worked
closely with the automotive indus-
try. She takes an active role in the
community, serving as PC mem-
ber and reviewing for top scien-
tific venues. Her research is at the

intersection of software engineering, security, and risk analysis, with
a particular interest in experimentation with threat and risk analysis,
analysis automation and compliance to intended security.

@ Springer

https://github.com/cocome-community-case-study
https://github.com/ncsu-csc326/iTrust
http://www.mybatis.org/jpetstore-6/
https://github.com/SvenPeldszus/GRaViTY-SecDFD-Mapping
https://github.com/SvenPeldszus/GRaViTY-SecDFD-Mapping
http://gravity-tool.org
http://gravity-tool.org
https://doi.org/10.1109/ICSAW.2017.25
https://doi.org/10.1109/ICSAW.2017.25
https://wiki.eclipse.org/EGit/User_Guide
https://wiki.eclipse.org/EGit/User_Guide

K. Tumaetal.

Sven Peldszus is a postdoctoral
researcher at Ruhr University
Bochum and worked before at the
Institute for Software Technology
at the University of Koblenz-
Landau. He received a master’s
degree from the University of
Darmstadt and submitted his PhD
thesis at University of Koblenz-
Landau. His research interests
include the continuous tracing of
non-functional requirements
throughout the software life cycle
and the model-based security and
software quality analysis in

variant-rich systems.

Daniel Striiber is a senior lec-
turer at the Computer Science and
Engineering department of
Chalmers and Gothenburg Uni-
versity, Sweden. He is also affil-
iated with Radboud University in
Nijmegen, the Netherlands. His
research interests are in model-
driven engineering, Al engineer-
ing, and variant-rich systems. He
was awarded his doctoral degree
from Philipps University Marburg,
Germany, and worked as a post-
doctoral researcher at University
of Koblenz and Landau, Germany,
and Gothenburg University, Sweden. He is a co-author of over 75
papers with six Best Paper Awards. He has been a Program Committee
member of several leading conferences, including FASE, MODELS,
and SPLC. He is the lead developer of Henshin, an internationally
used model transformation language.

Riccardo Scandariato received
his Ph.D. in Computer Science in
2004 from Politecnico di Torino,
Italy. In his academic career, he
had the opportunity to work in
several countries, including the
USA (University of Virginia,
2003), Italy (Politecnico di Torino,
2004-2005), Belgium (KU Leu-
ven, 2006-2014) and Sweden
(University of Gothenburg, 2014—
2020). Since late 2020, he is the
head of the Institute of Software
Security at the Hamburg Univer-
sity of Technology (TUHH), in
Germany. His research interests are in the field of secure software
engineering, with focus on the design of secure and privacy-friendly
applications.

@ Springer

Jan Jiirjens is a Professor, leading
the Institute for Software Tech-
nology IST within the Faculty for
Computer Science of the Univer-
sity Koblenz-Landau (Koblenz,
Germany) where he is Vice Dean
of Research. He is also Director
Research Projects at the Fraun-
hofer Institute for Software and
Systems Engineering ISST (Dort-
mund, Germany). Previous posi-
tions include a Professorship for
Software Engineering at TU Dort-
mund, a Royal Society Industrial
Fellowship at Microsoft Research
Cambridge, a non-stipendiary Research Fellowship at Robinson Col-
lege (Univ. Cambridge), where in 2009 he was appointed as Senior
Member, and a Postdoc position at TU Miinchen. Jan holds a Doc-
tor of Philosophy in Computing from University of Oxford and is
author of “Secure Systems Development with UML” (Springer, 2005;
Chinese translation 2009) and other publications mostly on software
engineering and IT security. More information: http://jan.jurjens.de.

http://jan.jurjens.de

	Checking security compliance between models and code
	Abstract
	1 Introduction
	2 Background
	2.1 Design-level model (SecDFD)
	2.2 GRaViTY program model (PM)
	2.3 Compliance

	3 Enabling compliance checks with automated mapping generation
	3.1 Corresponding elements
	3.2 Semi-automated mapping
	3.3 User verification of mappings
	3.4 Manual mapping of elements
	3.5 Compliance of models and code

	4 Security compliance with static program analysis
	4.1 Verification of specified SecDFD contracts
	4.2 Optimized data flow analysis

	5 Implementation
	6 Evaluation
	6.1 Evaluation of mappings
	6.2 Evaluation of the SecDFD contract verification
	6.3 Evaluation of optimized data flow analysis

	7 Discussion and threats to validity
	7.1 Discussion
	7.2 Threats to validity

	8 Related work
	9 Conclusion and future work
	Acknowledgements
	A Using the tool
	References

