
Noname manuscript No.
(will be inserted by the editor)

Checking Security Compliance between Models and Code

Katja Tuma 1 · Sven Peldszus2 · Daniel Strüber3 · Riccardo
Scandariato4 · Jan Jürjens2,5

Received: date / Accepted: date

Abstract The verification that planned security mech-
anisms are actually implemented in the software code
is a challenging endeavor. In the context of model-
based development, the implemented security mech-
anisms must capture all intended security properties
that were considered in the design models. Assuring
this compliance manually is labor intensive and can
be error-prone. This work introduces the first semi-
automatic technique for secure data flow compliance
checks between design models and code. We develop
heuristic-based automated mappings between a design-
level model (SecDFD, provided by humans) and a code-
level representation (Program Model, automatically ex-
tracted from the implementation) in order to guide
users in discovering compliance violations, and hence
potential security flaws in the code. These mappings
enable an automated, and project-specific static analy-
sis of the implementation with respect to the desired
security properties of the design model.

We contribute with (i) a definition of correspon-
ding elements between the design-level and the imple-
mentation-level models and a heuristic-based approach
to search for correspondences, (ii) two types of secu-
rity compliance checks using static code analysis, and
(iii) an implementation of our approach as a publicly
available Eclipse plugin, evaluated with three studies on

Katja Tuma E-mail: k.tuma@vu.nl · Sven Peldszus E-
mail: speldszus@uni-koblenz.de · Daniel Strüber E-
mail: d.strueber@cs.ru.nl · Riccardo Scandariato E-mail:
riccardo.scandariato@cse.gu.se · Jan Jürjens E-mail:
juerjens@uni-koblenz.de
1Vrije Universiteit Amsterdam, The Netherlands
2University of Koblenz-Landau, Germany
3Radboud University Nijmegen, The Netherlands
4Hamburg University of Technology, Germany
5Fraunhofer Institute for Software and Systems Engineering
ISST, Germany

open source Java projects. Our evaluation shows that
the mappings are automatically suggested with up to
87.2% precision. Further, the two developed types of se-
curity compliance checks are relatively precise (average
precision is 79.6% and 100%), but may still overlook
some implemented information flows (average recall is
65.5% and 94.5%) due to the large gap between the
design and implementation. Finally, our approach en-
ables a project-specific analysis with up to 62% less
false alarms raised by an existing data flow analyzer.

Keywords Security-by-design · Security Compliance ·
Data Flow Diagram (DFD) · Static Program Analysis

1 Introduction

For decades, organizations have been concerned with
the security of their software throughout the entire de-
velopment process. According to the principle of secu-
rity by design [36, 19, 64], the analysis of system assets
vis-a-vis security threats needs to be carried out already
in the design phase of the development process. In this
context, threat analysis techniques (e.g., STRIDE [66],
attack trees [63], CORAS [43], and threat patterns [1])
aim to identify security threats to software systems by
scrutinizing the architectural design. But, empirical ev-
idence shows that existing threat analysis techniques
can be labor intensive [65] and lack in automation [70].

Threat analysis is often performed on a graphical
representation of the software architecture called Data
Flow Diagram (DFD) [17, 67]. DFD-like models are ex-
tensively used in practice, e.g., in the automotive in-
dustry [44], at Microsoft [66], and some agile organi-
zations [11]. Still, the DFD notation is informal and
lacks the ability to specify security properties, which

ar
X

iv
:s

ub
m

it/
38

89
42

1
 [

cs
.S

E
]

 1
9

A
ug

 2
02

1

are needed to reason about security threats at the de-
sign level [24]. To support the detection of problematic
information flows at the design level, previous work ex-
tends the DFD notation with security-relevant informa-
tion [10, 67] and security semantics [71]. This work uses
one such extended notation, namely the Security Data
Flow Diagram, in short, SecDFD [71] (cf. Section 2).

Once a design model has been analyzed and its se-
curity flaws fixed, the results are of limited value if
the implementation does not comply with the security
properties described in the model. Further, design mod-
els tend to be useful during the design phase, but are
often ignored after the system is implemented. In par-
ticular, empirical evidence shows that only a fraction of
open source projects (26% of the investigated projects
in [31]) ever update their UML files at least once. Thus,
there is a disconnect between the architectural design
models (containing important security decisions) and
the implemented system and its defenses. To be useful
for security compliance analyses, an automated connec-
tion between the design model and its implementation
needs to be established.

Having this connection could also benefit to static
code analysis. Indeed, existing static analysis tools may
report violations which are afterwards labeled as false
alarms [30]. All reported violations have to be man-
ually sieved through, and, more importantly, the true
violations must be distinguished from the false alarms.
This is not a trivial task for static program analysis in
general, and in particular it is not trivial for static secu-
rity analysis (as observed by an industrial experiment
in [8]). Making such distinctions can be improved by
the contextual information which can be derived from
the (connected) design model.

To address these issues, we have proposed an ap-
proach to support compliance analysis between mod-
els and code, and extend it with security compliance
checks in this work. Specifically, we have previously
proposed a user-in-the-loop approach (cf. Section 2.3
and Peldszus et al. [54]) to support compliance checks
between a design-level data flow diagram enriched
with security-relevant information (SecDFD) and an
implementation-level model called Program Model, or
PM for short (cf. Section 2.2). To this aim, we have
made the following contributions:

(i) We presented an automated technique for es-
tablishing mappings between SecDFDs and PMs
(Section 3), thereby supporting the discovery of
structural compliance violations. The key idea
of our technique is twofold. First, we defined
a mapping between SecDFD and PM element
types, constraining how elements of a concrete
system can be mapped to each other. Second,

we combined similarity-based matching of element
names with structural heuristics (based on data
flow properties) to automatically derive suggested
mappings.

(ii) We presented an incremental technique where the
user is (a) involved in discovering an adequate
mapping and (b) able to inspect the planned se-
curity properties against the implementation.

(iii) We implemented (Section 5) the approach as a
publicly available Eclipse plugin and evaluated it
(Section 6.1) on five open source projects.

In this paper, we present three extensions which al-
low an automated security analysis between SecDFD
and its implementation:

(i) We develop static checks to verify security prop-
erties (i.e., SecDFD contracts) in the implemen-
tation (Section 4.1). Specifically, we develop two
types of checks: a rule-based check for crypto-
graphic contracts (encrypt and decrypt) and a lo-
cal data flow check for data processing contracts
(forward and join).

(ii) We develop an automated extraction of project-
specific sources and sinks of confidential informa-
tion from the design, which we leverage to reduce
the number of false alarms raised by an existing
data flow analyzer (Section 4.2).

(iii) We extend our implementation (Section 5) with
(a) automatically executable security compliance
checks, (b) additional user-interface functionali-
ties (e.g., the graphical view of the SecDFD, map-
ping several SecDFD models, etc.), and (c) an im-
proved mapping serialization.

We evaluated the previously proposed approach
with an experiment (Section 6.1) which showed a high
precision and recall of the suggested mappings [54]. Fur-
ther, we have shown that the user has an impact on
the suggested mappings, and can steer the automation.
Two studies were conducted to evaluate the extensions
presented in this paper (Section 6.2 and Section 6.3),
where we measure the precision and recall of the se-
curity contract checks, and the impact of using the
SecDFD model to derive project-specific sources and
sinks on the number of false alarms raised by an existing
data flow analyzer. The security compliance checks de-
veloped for the cryptographic process contracts are very
precise (average precision is 100%) and rarely overlook
implemented cryptographic operations (average recall
is 94.5%). In comparison, the local data flow security
compliance checks are less precise (average precision is
79.6%) and may overlook more implemented flows (av-
erage recall is 65.5%). Considering the vast gap between
design models and their implementation, this is still an

2

Fig. 1: A DFD for Eclipse Secure Storage

encouraging result. In addition, we show that the pro-
posed approach enables a project-specific taint analy-
sis with up to 62% less false alarms. Evidently, these
results are valid within the bounds of the threats to
validity presented in Section 7. We position our contri-
butions in the context of the related work in Section 8
and present the concluding remarks in Section 9.

2 Background

This section describes the background on the design-
level model, implementation-level model, architectural
compliance, and data flow analysis. We consider the
Eclipse Secure Storage [21] to illustrate the models con-
sidered in this work. The secure storage allows plugins
to store and access secret data. This functionality is
used, for example, by the Git extension of Eclipse to
store user names and passwords [74].

2.1 Design-level model (SecDFD)

At design time, the processing of system data can be
specified with a variety of notations. Apart from DFDs,
frequently used notations are activity diagrams [15] and
business process models (BPMN [7]). Our rationale for
focusing on DFDs is twofold: First, they are widely ap-
plied in practice, specifically, in the automotive indus-
try [44] and at Microsoft [66] as part of their STRIDE
methodology. Second, they represent an essential set of
concepts necessary for data flow analysis (processes and
data flows between them), which can be mapped ex-
haustively to activity diagrams and business processes,
rendering our mapping generation technique also appli-
cable to these model kinds. We introduce our technique
for DFDs, but it can be applied to a broad range of
modeling languages supporting data flow modeling.

In what follows, we introduce DFDs and an ex-
tended notation which allows to include security-
relevant information in DFD models, which is required
for checking the consistency between planned security
and implemented security properties.

Fig. 2: An excerpt of the SecDFD for Eclipse Secure
Storage

Data Flow Diagrams (DFDs). A Data Flow Di-
agram (DFD) is a graphical representation of the soft-
ware architecture and the information it handles [66].
This type of directed graph represents how the infor-
mation enters, leaves, and traverses the system. The
DFD consists of processes (active entities), external en-
tities (e.g., 3rd parties), data stores (where information
rests), data flows (carrying the exchanged information),
and trust boundaries (signaling trust levels). Fig. 1 de-
picts a DFD for the Eclipse Secure Storage. The plugin
attempts to access a secret by sending a request includ-
ing path information of where to look for the secret
(e.g., a password request for a user name of a Git ac-
count). The secure storage queries an internal tree-like
data structure to find the corresponding node contain-
ing the secret. Next, the cache is queried for the secret
value, which can be in clear text (i.e., secret on flow 6
in Fig. 1) or encrypted (i.e., encr. data. on flow 7). If
the value is in clear text, the secret is sent to the plu-
gin. In case of an encrypted value, a decrypt operation
either fetches the root password from the operating sys-
tem or prompts the user to provide it. Upon a success-
ful decryption, the secret is sent to the plugin (flow 10
in Fig. 1). Though useful for performing architectural
threat analysis [69], we do not use trust boundaries in
our work.

Security Extension. To capture security proper-
ties at the architectural level, we use the Security Data
Flow Diagram (SecDFD [71]). SecDFD is a notation
that enriches DFD with security concepts to enable a
formally grounded information flow analysis, focusing
on the confidentiality and integrity of information as-
sets. An information asset is specified with a unique
name, a source element, (where the asset is first cre-
ated), target element(s) (where the asset is intended to
be consumed or at rest), a type, and a level of confiden-
tiality concern (high (annotated with "C" in Figure 2)
or low). The data flows that carry assets between other
elements (e.g., from an external entity into a process)
refer to the specified asset instances. The direction (and
order) of the data flows carrying the assets is specified

3

explicitly (as part of the regular DFD notation). Sec-
ond, process nodes can be tagged with security con-
tracts that define how the security properties of assets
change upon exiting the node. A contract of a process
node is initialized by specifying the contract type, the
incoming and the outgoing assets (which must be trans-
ported over some data flows of the process). The con-
tracts are essential for the security analysis with label
propagation in the SecDFD.

The SecDFD defines four such contracts.

– Encrypt or Hash contract. The contract for encrypt-
ing input asset(s) always results in propagating a
low (public) label on the output flow(s).

– Decrypt contract. If the input asset is low decrypt-
ing it will result in propagating a low label. However,
if the input asset is high decrypting it will result in
propagating a high label on the output flow.

– Join contract. The contract for joining two or more
assets propagates the label equivalent to the most
restrictive input asset. For example, if a confidential
asset is joined with a non-confidential assets the as-
set on the output will be confidential.

– Forward or Copy contract. This contract will copy
the labels of the input asset(s) to the output flow(s)
carrying the corresponding forwarded asset(s).

Finally, the user can specify attacker zones. An at-
tacker zone is defined by a unique name, and refers to
SecDFD elements (specifically, external entities, pro-
cesses, data stores,and data flows) which, according to
the user, may be part of an attack surface. For the pur-
pose of this study, the attacker zones mark the elements
of the model where an attacker is able to observe (read)
all assets, but other security analyses may require more
elaborate attacker models. The user can modify the at-
tacker zones after label propagation and play out sev-
eral what-if scenarios.

These simple extensions allow us to identify infor-
mation leaks in the model. For instance, the extended
notation [71] is shipped with a simple label propaga-
tion (using a dept-first search) according to the speci-
fied process contracts. In the order of the data flows in
the model, the labels get propagated on the data flows,
according to the specified contracts along the way. Once
the labels have been propagated, a static check is exe-
cuted to determine if any confidential information flows
to an attacker zone.

In comparison with the regular DFD from Fig. 1,
Fig. 2 shows an excerpt (for clarity) of the SecDFD for
the Eclipse Secure Storage example. If a plugin requires
secret data that is cached encrypted, the user must en-
ter a password when prompted (c.f. pass. ext. in Fig. 2).
The externally provided password is then used to de-

crypt the cached secret data, and if successful the plu-
gin is allowed to read it. First, the designer must specify
that the external password is confidential. Second, the
designer needs to specify the process contract (e.g., for
process Decrypt_data). Since the external password is
confidential, it should not be leaked to other plugins
running in the environment. But, in Figure 2, the Plu-
gin is not a malicious entity (i.e., it is not part of an
attacker zone).

The specified security properties can be also prop-
agated from the SecDFD to code using the mappings
created by our approach. They can then be used as in-
put for code-level analysis tools, thus enabling compli-
ance checks between planned and implemented security
properties (see Sect. 3.5). For the concrete syntax and
semantics of SecDFD we refer the reader to [71].

2.2 GRaViTY Program Model (PM)

To create a mapping between SecDFDs and their con-
crete implementation we need an easy to analyze rep-
resentation of the source code. Representations such as
abstract syntax trees (AST) contain every detail from
the implementation, which makes it hard to analyze
for security purposes. Many details about the imple-
mentation are not required for our approach. At the
same time, important information is not always directly
accessible. For example, in the source code files or an
AST accesses of fields are not directly visible as access
edges between the source and the accessed field, but
are access statements within the source to some field
with a given name. For our approach, it is only im-
portant to know that there is an access to a specific
field from some source, but we do not need to know ev-
ery detail about the circumstances of this access. The
Program Model, herein PM (proposed with the GRaV-
iTY -framework [50, 51, 56]) creates a more suitable ab-
straction for security analysis and allows easy queries,
which were very useful for our approach. The GRaV-
iTY -framework has been used for the evaluation and
execution of refactorings [51], for the detection of anti-
patterns [52], as well as for the automated design opti-
mization of Java applications [61].

Fig. 3 shows an excerpt of the PM created by the
GRaViTY -framework for the Eclipse Secure Storage
example. The figure shows two method calls. The first
call is from the method get(String, String), de-
fined in the class SecurePreferencesWrapper, to the
method get(String, String, SecurePreferenes-
Container) of the class SecurePreferences. The sec-
ond call is from the called method of the first
call to the method getPassword(String, IPref-

4

:TPackage

tName = "storage"

:TClass

tName = "SecurePreferencesWrapper"

:TClass

tName = "SecurePreferences"

:TMethodDefinition

:TMethodSignature :TMethodName

tName = "get"

:TMethodDefinition

:TMethodSignature

:TParameter

:TParameter

:TClass

tName = "String"

:TPackage

tName = "security"

:TMethodName

tName = "getPassword"

:TMethodDefinition

:TClass

tName = "SecurePreferencesRoot"

:TMethodSignature

:TParameter

:TParameter

:TParameter
:TClass

tName = "SecurePreferencesContainer"

contains

defines

definitions

signatures

defines

call

signatures

definitions

returnType returnType

typetype

childparent

call

contains contains

defines

definitions

signatures

type type

type

Fig. 3: Excerpt from the Program Model (PM) of the Eclipse Secure Storage (shown as UML object diagram)

erencesContainer, boolean) which is defined in the
class SecurePreferencesRoot.

On top of the figure we can see the package struc-
ture of the program. All packages without a parent
can be taken as entry points for a search. Addition-
ally, it is possible to iterate over all types directly. The
types (in this case classes) are shown in the second row,
each with a reference to the members defined within
the type. For the classes SecurePreferencesWrapper,
SecurePreferences, and SecurePreferencesRoot
only a single method is shown. Methods are repre-
sented by a triple of method name, method signature
and method definition. This allows an efficient search
for specific methods, starting with the method name,
continuing with signatures, and finding concrete defi-
nitions for them. Method signatures have parameters
which have a reference to the type representing the pa-
rameters type and a reference to the return type. In
the PM excerpt only the parameters of the signature
get(String, String):String are shown.

A benefit for our mapping from SecDFD to Java
implementations is the possibility of an iterative search,
starting only with little knowledge about the searched
elements–e.g., a method name. The PM allows to start
a search with such little information and to find more
concrete elements by considering more information like
method parameters without iterating over all method
definitions defined in the source code.

2.3 Compliance

Identifying the differences and equivalences between the
planned and the implemented software architecture is

the goal of architecture compliance checking. The com-
pliance checks can be based on a static set of rules [39],
dynamic monitoring of a running system [29], or a hy-
brid of both [16]. In our work, we statically check the
compliance of design-level models to implementation-
level models. Running compliance checks reveals the re-
lations between a set of components of the first (design-
level) model and a set of components of the second
(implementation-level) model. As outcome, three dif-
ferent types of relations can be discovered.

Convergence. The compliance checks reveal an al-
lowed relation between the implemented components.
Convergence indicates that the implementation is com-
pliant with the planned architecture. In the context of
the mappings, convergence means that the user has ac-
cepted a suggested mapping or has manually defined a
mapping. In the context of security properties, conver-
gence means that a planned security contract is imple-
mented at the correct location and no leaks have been
detected by a data flow analyzer.

Divergence. The compliance checks reveal a rela-
tion between the implemented components that is not
allowed. In other words, the implementation diverges
and is therefore not compliant to the planned archi-
tecture. In this work, divergence means that there are
flows of assets in the implementation which have not
been defined in a DFD. We look for elements that re-
late to existing mappings to find the relative parts of
the implementation. In the context of security prop-
erties, we identify divergence when (i) there exists an
implemented data flow which does not comply with the
specified security contracts of the process node, or (ii)
the analysis with a state-of-the-art data flow analyzer
reports a leak of potentially confidential information.

5

Absence. The compliance checks reveal a relation
between design-level components that were not imple-
mented. Absence indicates that the source code is not
compliant with the planned architecture due to a miss-
ing implementation. In the context of the mappings, ab-
sence means that the user finished using our approach,
but there are still design-level elements that have not
been mapped. In the context of the security proper-
ties, absence means that the SecDFD contracts have
not been implemented.

2.4 Data Flow Analysis

Secure information flow analysis dates back to the 70s,
and has been heavily studied ever since [62, 9, 42]. In
principle, the idea is to perform static analysis of the
program with the goal of showing that if executed, the
program does not leak confidential information. Data
flow analysis computes the data dependencies (i.e.,
which variables are dependent) to determine how data
propagates in the program. Data flow analyzers take as
input an abstracted representation of the code (e.g., ab-
stract syntax tree, control flow graph) to perform the
analysis. Taint analysis is a kind of information flow
analysis where data objects are tainted at the source
and tracked to the sink using data flow analysis [42]. It
is one of the most used data flow analyses and has even
been integrated to some programming languages (e.g.,
perlsec [57]). Source methods are characterized by read-
ing data from a system resource (e.g., remote database
or user input) and returning them to the caller. Con-
trarily, sink methods write to system resources. An
alarm is raised if a tainted object (i.e., source) flows
into a forbidden location (i.e., sink) in the program.

3 Enabling Compliance Checks with
Automated Mapping Generation

Assuming a correct DFD, the way it is implemented can
vary depending on concrete design (e.g., architectural
patterns) and implementation specific decisions (e.g.,
programming language). Therefore, a fully automatic
generation of a correct and complete mapping between
DFDs and code is not feasible. Yet, a manual specifica-
tion of the same mapping is inefficient and error-prone.
To this end, we propose an iterative technique for inter-
actively guiding the user in finding an adequate map-
ping by combining automated mappings with user de-
cisions as shown in Fig. 4. In step 1, mappings between
DFD elements and implementation elements are calcu-
lated using a heuristic technique. In step 2, these map-
pings are presented to the user and manually checked

3.1 – 3.2 Automated
Mapping of Elements

3.3 User Verification of
Mappings

3.4 Manual Mapping of
Elements

4.1 SecDFD Contract
Verification

4.2 Data Flow Analysis

Section 4

Section 3

Fig. 4: Semi-automated mappings approach (Section
3) and security compliance checks (Section 4)

by her. In step 3, the user can manually map addi-
tional elements. Afterwards the automated mapping is
executed again, benefiting from the user input. This
process terminates when the user cannot find any addi-
tional mapping or finds a violation. Next, the user can
perform a security analysis of the SecDFD with respect
to the implementation (Section 4).

In this section we describe the steps of our tech-
nique in detail, including the automated suggestions.
In addition, we explain the use of these mappings for
compliance checks. In Section 3.1, we define the allowed
correspondences between DFD and PM element types.
In Section 3.2, we show how our automated technique
in step 1 establishes concrete mappings between DFDs
and their implementations by means of a naming- and
structure-based heuristics. In Section 3.3 and 3.4, we
explain the interactive steps 2 and 3 of our technique.
In Section 3.5 we argue how the created mappings can
be used for checking general compliance.

3.1 Corresponding Elements

As a prerequisite for mapping DFD elements to code
elements, we have to define which DFD element can
correspond with which code elements.
Assets→ types: The assets in a DFD are the elements
holding critical data. On the level of implementation,
data is usually stored in fields, processed using variables
and transmitted using parameters and return values. A
single asset can be stored in many different locations
at the same time which makes it infeasible to map an
asset to every single location. The only property of an
asset which only changes rarely in programs, written in
an object-oriented languages, is the asset type.
Data stores → types & methods: If we think about
data stores like the cache in Fig. 1 and 2, it is quite
obvious that this could be a field in some class. But it

6

dfd:Process pm:TMethodName
++

Constraint: equivalent(dfd.name, pm.tName)

Fig. 5: Rule describing the name matching for meth-
ods

:Asset :TAbstractType

:Process :TMethodName

:TMethodSignature++:Flow

signatures

returnType

outFlows

assets

Fig. 6: Rule for extending name matches based on
return types

could also be implemented by an operation which, e.g.,
requests the cached values from an external server by
creating HTTP requests. The common trait between
these two variants is the type used to store the data in.
The field has a type which provides getters and setters
for using the data store, and the method used to get
data from a remote server is implemented in a type.
Therefore, we map data stores to types as well as to
the methods used for accessing the stored data.
Processes → method(-names): Processes in DFDs
describe functionalities which process data, like meth-
ods in implementations do. Obviously, these two ele-
ments correspond with each other. While a concrete
method definition in an implementation contains all de-
tails describing the functionality of this method, the
processes only have a name describing the functional-
ity. We assume that a developer implementing a pro-
cess will choose a similar name for the methods imple-
menting this process. This leads us to a correspondence
between the names of processes and the names of meth-
ods.
Processes + Assets → method parameters: Be-
tween processes in a DFD, data can be exchanged using
flows, where the exchanged data are represented by as-
sets on the flows. In the methods implementing these
processes the same data have to be exchanged. Data
between methods in implementations are usually ex-
changed using parameters and return values. Therefore,
we can combine the name mappings between processes
and methods with the assets flowing into and out of a
process to method parameters giving us the according
method signatures.

3.2 Semi-automated Mapping

In what follows we discuss the steps of our automatic
generation of mappings in detail.

The automated generation of mappings is based
on name matchings and structural heuristics, which

are sequentially executed and complement each other.
For illustration, we formalize two of our mappings us-
ing graph rules, using a notation inspired by algebraic
graph transformation [22] (explained below). The other
mappings can be formalized in a similar way.

Name matching. First, the names of elements
from a DFD are mapped to the corresponding names
in the implementation. Asset and data store names are
mapped to the names of types and process names are
mapped to the names of methods. Fig. 5 shows a rule
for mapping processes from a DFD to method names
from a PM. A correspondence (visualized as circle con-
necting the corresponding elements) between a process
and a method name is created (denoted by ++) if the
constraint at the top of the rule holds. In this case the
names of the two elements on the left and right of the
rule have to be equivalent. The precise definition of this
equivalence is described in what follows.

Names, both in a DFD and in a Java implemen-
tation, are usually built by concatenating multiple
words. For example, a Java method name getPassword
consists of the word get and password. These words
can vary slightly in the names of the corresponding
DFD processes (e.g., in plural form, passwords in-
stead of password). In addition the style of word con-
catenation can differ. In Java usually the camel case
(getPassword) is used, whereas in DFDs this is not
a prescribed style, so underscores may also be used
(Get_Passwords).

To deal with these issues, we first split the strings at
frequently used delimiters and upper-case characters.
This gives us for the example the sets of words [get,
Password] and [Get, Passwords]. Then we compare the
lower-case versions of the words with each other using a
fuzzy compare based on the Levenshtein distance [41].
The Levenshtein distance is a measure of the minimal
amount of characters which have to be removed, added
or flipped to change one word into the other one. For
the given example this distance is zero and one as the
first word is already identical and only the character
s has to be added to change password into passwords.
We accept different distances between words for con-
sidering them as identical according to the length of
the words to be compared.

Finally, a DFD process is usually implemented
in multiple methods, typically having slightly more
concrete names. For example besides the method
getPassword, there might also be an additional method
internalGetPasswod involved in the implementation
of the process Get_Passwords. But the DFD process
name might also contain additional information – e.g.
the process get_Passwords_External of the DFD in
Fig. 1. To address this challenge, we compare all words

7

from the two names with each other and count the sim-
ilar words. If this number reaches an threshold of more
than half the number of the average words of the com-
pared names, we consider the names sufficiently equal.

For the example DFD in Fig. 1 and the PM ex-
cerpt in Fig. 3 we get a name match between the
Get_Value process and the two method names get
and getPassword as well as a match between the pro-
cess Get_Passwords_External and the method name
getPassword. While two of this matches are expected,
the match between Get_Value and getPassword is un-
expected and should be dropped in the following steps.

Extending name matches to method signa-
tures. For every method name, multiple signatures
may exist. Even if our name matches were always
perfectly correct, this would not imply that all sig-
natures with this name are the ones corresponding
to a given process. For example, besides the rele-
vant signature getPassword(String, IPreferences-
Container, boolean):PasswordExt, there might be a
second signature getPassword():char[] defined in the
Java standard library which is never used in the im-
plementation. To identify the relevant signatures, we
use data flow information about assets flowing into and
out of a process. Information flowing into a process has
to be passed to the implementation of the process, for
example, as a parameter value. Likewise, information
leaving a process can leave it over return values and
parameters. Accordingly, we can use the mapped assets
to identify relevant signatures. For every signature, we
count how many mapped assets are compatible with
the parameters and return types of the existing signa-
tures. If we have at least one match we consider this
signature for further mappings.

A rule for extending a process mapping based on an
asset flowing out of a process is shown in Fig. 6. On
top of the rule we can see an existing mapping between
a process and a method name, as e.g. created by the
rule shown in Fig. 5. A mapping to one of the signa-
tures having this name is created if there is a mapping
between an asset flowing out of the process and a type
which is the return type of the signature.

If we look at the return type of the signature
get(String, String):String and assume that the
secret asset from Fig. 1 has been mapped to the class
java.lang.String we’ll accept this signature as cor-
responding with the process Get_Value. The other
method name corresponding with this process was
getPassword. The return type of this method signa-
ture is PasswordExt and also no parameter type is
matching to an asset. Accordingly, we don’t create a
correspondence.

Finding implementations of signatures. The
last step is to find concrete implementations of a signa-
ture corresponding with the process. For every signa-
ture there might be several concrete implementations,
all of which do not necessarily correspond to the pro-
cess. We make use of the flows between different pro-
cesses to find the concrete definitions.

If there is a flow from one process to another pro-
cess, this does not only mean that there has to be
a signature which has the capability to return or re-
ceive the according asset. There also has to be a def-
inition of this signature which is called from a defini-
tion in the other process. Therefore, we search for two
kinds of data flows between the concrete definitions of
the signatures found before.

1. Parameters passed by a call from the source of a
flow to to the target of the flow.

2. Return values returned along a call from the target
of a flow to the source of the flow.

The flow between two such definitions is not neces-
sarily a single direct call between the two definitions.
There can also be multiple definitions in between for-
warding data. For example we can see in Fig. 3 a call
between the methods get(String, String, Secure-
PreferenesContainer):String and getPassword(
String, IPreferencesContainer, boolean):Pass-
wordExt but in the DFD in Fig. 1 there is no flow
between the processes Get_Value and Get_Pass-
words_External, they have been mapped to. In
the implementation the get method forwards the
return value of getPassword to a call of method
decrypt which has been mapped to the process
Decrypt_data. Matching this intermediate to one of
the two involved processes is non-trivial. However, if
we found such a flow, we can definitely assume that we
found two definitions implementing at least parts of
the two processes.

The intermediate definitions can be partly mapped
to one of the two processes by considering the
internal coupling in a process. For every pair of
signatures mapped to the same process, we look
for pairs of definitions calling each other. For
example, this is the case for the definition of
the signature internalGetPassword, which is called
by getPassword(String, IPreferencesContainer,
boolean):PasswordExt.

Cleanup. After matching assets and processes we
have to decide which matches are most likely to be cor-
rect and, therefore, should be presented to the user.
For that reason, we introduce a certainty score for our
mappings. This score is calculated with respect to the
quality of the underlying name matching as well as the

8

coupling of matched elements with other matched el-
ements. For every DFD element we only present map-
pings whose score is higher or equal to the median score
of all mappings for this element.

The mappings sorted out in this step are not pre-
sented to the user, but may be discovered later again
in the interactive process – based on future matches,
which might have a coupling to the elements that are
now discarded.

3.3 User Verification of Mappings

The mappings created in the previous step are now pre-
sented to and verified by the user. For every asset-, data
store-type and process-definition mapping the user can
preform three actions.
Accept: The user can accept the mapping. From then,
the mapping cannot be discarded by the optimization
step of the automated mapping approach anymore, and
all mappings coupled to this mapping obtain a higher
certainty score.
Reject: The user can reject the mapping. From then,
this mapping is never presented to the user again and
it is not considered anymore for extending it to other
mappings. All other mappings to which the rejected
mapping has been extended will be removed, too, but
might be presented to the user again.
Tolerate: The user can choose to ignore some suggested
mappings. Mappings that are not explicitly accepted or
rejected are suggested again and can be re-assessed in
future iterations.

Mappings accepted or rejected by the user allow
the heuristic to automatically discard related mappings
that have only been found by following up the rejected
mapping. This is how the search space is reduced in the
next automated iteration. Conversely, manually accept-
ing mappings can lead to the score of related mappings
being increased and, for this reason, allow to propose
new mappings which haven not been considered as cor-
rect ones before. Anyhow, a limitation of our heuristic is
that they cannot detect mappings which are outside of
the search space created by the initial name mappings.
We are overcoming this limitation in our approach by
including user feedback as described in what follows.

3.4 Manual Mapping of Elements

To increase the search space, an additional user step
is conducted after the user manually verified the auto-
matically created mappings (or at least a part of them).
In this step, the user has to add at least one new map-
ping to give additional input to the automated mapping

algorithm. The selection of this manually mapped ele-
ment can have a large impact on the efficiency of the
following automated steps.

3.5 Compliance of Models and Code

The mappings can be used to perform compliance
checks. In what follows we describe the check devel-
oped to determine if the implementation corresponds
with the specification in the DFD.

The correspondence checks take place while the
mappings are created. Using the proposed approach, we
check for the three kinds of correspondences introduced
in Section 2.3:
Convergence. All DFD elements which have been
mapped to implementation elements and have not been
rejected are allowed to be mapped. Following the def-
inition of convergence, the convergences between the
DFDs and the code are described by the set of all al-
lowed mappings.
Divergence. Elements present in the code, but not
specified in the DFD represent a divergence between
the DFD and code. To help the user discovering diver-
gences, it is possible to show all flows from members
mapped to one process to other members not mapped
to this process. If the target of such a flow has not been
mapped to any process, there seems to be a divergence.
But, a divergence also arises if there is a flow between
two processes in the code that has not been specified
on the DFD. If an critical asset is communicated along
such a flow this is not only a divergence from the in-
tended design but a security violation.
Absence. If we are neither able to map a DFD element
to the code automatically and the user is not able to
map the same element when asked, we discover an ab-
sence of specified functionality in the code. Assuming
correctness of DFD models, we only have to consider
this one direction of absence (concerning the opposite
direction, see divergence).

Using these checks, a developer or code reviewer
can detect a compliance issue between an DFD and
the implementation at hand. However, regarding secu-
rity, these checks are not precise enough: They might
not reveal flows of confidential assets into parts of the
program that are not supposed to take place – e.g.,
if a developer uses a full representation of an object,
instead of a stripped one. To this end, we can per-
form more sophisticated security checks, as described
in what follows.

9

4 Security Compliance with Static Program
Analysis

After the user creates the mappings using our approach
(Section 3.5), she can use them to verify the security
of the implemented systems. Besides precise security
checks that are addressed in the main part of this sec-
tion, the created mappings can also be used to address
security on an organizational level.

One approach to achieve a secure system is to struc-
ture it into different security levels where only some
parts have to be maintained by security experts, e.g.,
this kind of structure can be used to isolate subjects
for manual security code reviews. Unfortunately, such
a structure also might erode and increase the effort re-
quired for maintaining security [49]. To detect such an
erosion security metrics have been defined [68, 3]. These
metrics (as many other security checks) need informa-
tion about security critical parts of the system, there-
fore their application is often not possible.

In what follows, we demonstrate how we can trans-
fer security related information from the design-time
security models to the implementation using the cre-
ated mappings. As example, we use the Critical Design
Proportion metric, specifying the ratio between security
critical and not security critical classes [3]. To calculate
this metric, we have to classify all classes as security
critical or not security critical. Even though the assets
are mapped to types, they do not necessarily represent
security critical classes, e.g., the class String is used
to represent both secret assets but also other data. We
can derive the security critical classes from the mapping
by first identifying the security critical methods and af-
terward the classes defining these methods. These are
exactly all methods mapped to a process in the SecDFD
that is processing an asset tagged as confidential.

While security metrics can make security mainte-
nance controllable and demonstrate how the informa-
tion in the SecDFD can be leveraged, they do not al-
low to actively detect and prevent security violations.
For this reason, the main part of this work rather fo-
cuses on automating a security analysis of the SecDFD
with respect to the implementation (see Fig. 4). First,
the developer can automatically verify if the specified
SecDFD contracts are implemented. Second, she can
automatically extract project-specific sources and sinks
and perform a data flow analysis. The provided feed-
back of compliance violations and potential leaks may
cause her to revisit the implementation, and reflect the
changes in the SecDFD. First, we discuss the verifica-
tion of the specified SecDFD contracts in the implemen-
tation. Second, we reveal how using our approach helps
in reducing false alarms raised by data flow analysis.

4.1 Verification of Specified SecDFD Contracts

We developed static checks to verify the compliance of
the implementation to the SecDFD encrypt, decrypt,
forward, and join contracts. We assume an existing
mapping between the SecDFD and the implementation
before executing the checks.

Encrypt and Decrypt contracts. When exe-
cuted, all encrypt and decrypt process contracts will be
checked against the implementation. For each process
with such a contract, we collect all the mapped method
implementations that call at least one method signature
performing an encrypt or decrypt operation. If at least
one such method implementation exists, we consider
that the process contract has been implemented, and
mark it as convergence. If no such method implemen-
tation has been mapped to this process, we consider
that the process contract has not been implemented,
and mark this occurrence as absence.

We provide a list of well known methods that are
called during cryptographic operations. We compiled
this list by inspecting the Java standard security li-
brary, and packaged it together with the plugin. In addi-
tion, the user is able to add project-specific methods to
this list (at runtime) via the user interface. We remark
that state-of-the-art static analysis tools (e.g., Sonar-
Cube1) maintain similar rules for checking implemented
encryption logic, but with our approach users can verify
their expectation regarding the planned security.

Forward and Join contracts. The forward and
join contracts at the SecDFD level describe local data
flows within a process that have to be present in the im-
plementation. To check if the specified contracts have
been implemented, we propose a two-step procedure
introduced in what follows. First, we extract the rel-
evant asset-communicating flows from the implementa-
tion (I-Flows). Second, we compare the implemented
flows with the expected flows specified in the SecDFD
(D-Flows).

The main challenges in checking forward and join
contracts are that one process can be realized by mul-
tiple methods but there are also many methods that
do not belong to any process but interact with multiple
processes. Furthermore, an asset in the SecDFD can be
realized by different types in the implementation. For
example, the encrypted data (encr. data) in Fig. 2 is
realized by instances of the Java classes String and
CryptoData. In addition, a single type in the imple-
mentation can be used to create instances of different
assets. This is especially a problem for frequently used
types like strings that can be used to represent nearly
every asset as shown before.

1https://www.sonarqube.org

10

In Algorithm 1, we show the pseudo code for the ex-
traction of the implemented flows (I-Flows) for a given
process. Following the definition of the forward and join
contracts, we search for data flows from one or multiple
sources to a single target. Accordingly, an I-Flow con-
sists out of the flow’s target method a set of its source
methods. The inputs to this algorithm are the process
for which we want to extract the implemented flows and
the mapping described in Section 3.1.

First, we retrieve the methods implementing the
process from the mapping. For each method, we search
for the relevant incoming and outgoing flows in the im-
plementation. To this aim, we implement operations in-
Flows and outFlows which collect all flows into the pa-
rameters of the methods and all incoming or outgoing
return flows. Next, we filter the collected flows in lines
3–8 and 10–14. For the forward and join check only the
flows that can be used to communicate assets from the
SecDFD are relevant. This means that the type commu-
nicated along a data flow has to be mapped to an asset.
Accordingly, we filter out the flows which communicate
unmapped types. At this point it is not important which
assets can be communicated along the single data flow.

After filtering, for every outgoing flow we perform
a backward search in line 18 and check in line 19 if we
found reachable incoming flows (sources). The pair of
the found sources and the target represent one I-Flow,
that is added to the result set i. If exactly one incoming
data flow is propagated to the outgoing data flow, we
found an implemented forward, and if multiple incoming
data flows are propagated to an outgoing data flow, we
found an implemented join. Note that we only consider
patterns with one outgoing flow. If there are contracts
in the DFD with multiple outgoing flows, they have to
be split into multiple contracts. Finally, we return all
found I-Flows.

After we extracted the I-Flows, we compare them to
the expectations from the SecDFD using Algorithm 2.
The input to this algorithm are the process, the map-
ping, and the extracted I-Flows. The output is a set of
identified violations (absence and divergence).

The algorithm is again based on two steps. First, we
collect all possible matches between the I-Flows and the
expected flows from the SecDFD contracts (D-Flows).
We consider the implementation of a contract to be con-
vergent with the SecDFD if and only if there exists a
bidirectional one-to-one mapping between the D-Flow
of the contract and an I-Flow. We call this property a
biunique mapping. But, the matches are usually not bi-
unique because of the overlapping asset type mappings,
therefore we have to reduce the initial set of matches
to a set of biunique mappings in the second step.

Input : Process p, Mapping m
Output: I-Flows i

1 methods ← m.methods(p)
2 in ← inFlows(methods)
3 foreach flow ∈ in do
4 type ← communicatedType(flow)
5 if m.mapping(type) = ∅ then
6 remove flow from in
7 end
8 end
9 out ← outFlows(methods)

10 foreach flow ∈ out do
11 type ← communicatedType(flow)
12 if m.mapping(type) = ∅ then
13 remove flow from out
14 end
15 end
16 i ← {}
17 foreach target ∈ out do
18 sources ← reachableBwd(target, out)
19 if sources 6= ∅ then
20 add (sources,target) to i
21 end
22 end
23 return i
Algorithm 1: Algorithm for the Extraction of the
I-Flows i for a given Process p

Input : I-Flows i, Process p, Mapping m
Output: Violations v

1 v ← {}
2 matches ← {}
3 foreach contract ∈ fwdJoinContracts(p) do
4 inAssets ← contract.inAssets()
5 foreach outAsset ∈ contract.outAssets() do
6 flows ← {}
7 foreach iflow ∈ i do
8 type ← communicatedType(iflow.trg())
9 if outAsset ∈ m.mapping(type) and

∀ s ∈ iflow.src() : (m.mapping(
communicatedType(s)) ∩ inAssets) 6= ∅
then

10 add iflow to flows
11 end
12 end
13 if flows = ∅ then
14 add "Absence: Not implemented" to v
15 end
16 add (contract, outAsset)→flows to matches
17 end
18 end
19 solution ← findSolution(matches)
20 if solution = ∅ then
21 add "Divergence: No biuniqe assignment" to v
22 else
23 foreach flow ∈ (matches \ solution.flows()) do
24 add "Divergence: Not in DFD" to v
25 end
26 end
27 return v
Algorithm 2: Algorithm Checking the Imple-
mented Flows i for a given Process p against the
Specified Contracts

11

To collect the matches we iterate over every con-
tract and every outgoing asset of the contract in lines 2
and 5. For each of these pairs we select I-Flows if their
possible outgoing assets contain the expected asset and
if for every incoming flow at least one possible asset
is contained in the set of expected incoming assets (see
line 9 in Algorithm 2). If no such I-Flow exists, the con-
tract is not implemented (for this outgoing asset) and
we detect a divergence (lines 13 and 14).

After collecting all possible matches, we have to
find a biunique solution within the created mappings
between the D-Flows and the I-Flows. This is imple-
mented in the function findSolution. The easiest imple-
mentation is to iteratively assign I-Flows to D-Flows
and to check if a solution is still possible. If so, we can
assign the next I-Flow to a D-Flow, else, we have to
backtrack. If we cannot find such a solution, we report
a violation as there is at least one not implemented con-
tract and we detected an absence (lines 20 and 21). If
we found a solution, all specified contracts have been
implemented and we found a convergence. However, all
I-Flows that are not part of the solution are still re-
ported as violation as they are unspecified forwards or
joins of assets and represent a divergence.

4.2 Optimized Data Flow Analysis

To perform a data flow analysis, the developer needs
to identify the sources and sinks of secret data
in the implementation. More importantly, to per-
form a meaningful and precise data flow analysis,
the sources and sinks must be identified correctly.
For instance, we have found the standard substring
method in Java (java.lang.String.substring(int,
int):String) as one of the sink method signatures in
an existing list of identified sinks2. This will result in
many false alarms raised by the analyzer, since it seems
unlikely that data can leave the system through this
method and it is a very common operation over strings
in Java. Dually, overlooking an important source may
result in overlooking true leaks. Though some sources
and sinks can be extracted from library APIs [5, 59],
finding project-specific sources still remains a challenge.
In addition, many data flow analyzers work with a flat
security policy. Specifically, they raise an alarm if there
is an access path between any of the source methods
and any of the sink methods. But, certain tainted data
might be expected to flow to some sinks (e.g., writing
an encrypted password to local storage) but not others.
If all the tainted objects are treated equally, the ana-

2https://github.com/secure-software-engineering/
SuSi

lyzer raises false alarms. In response to this challenge,
we aim to automatically extract project-specific sources
and sinks for each SecDFD asset.

Project-specific sources. The SecDFD requires
the user to specify confidential assets, thus their source
element (in the model) can easily be determined. There
are three possible types of source elements: an external
entity, a data base, or a process. If the asset source is
an external entity and it is mapped to method defini-
tions, their signatures are collected as sources. But, if a
mapping of the external entity does not exist (e.g., for
the entity Plugin from Fig. 1 and 2), the signatures of
the mapped method definitions of the processes reading
from that entity are collected instead. If the asset source
is a data store, it can be mapped to methods or types.
First, the signatures of method definitions mapped to
the data store (if any) are collected. Second, if the data
store is mapped to a type (e.g., a Class), the signatures
of method definitions defined by this class are also col-
lected, but only if the return type matches the asset
type. Finally, an asset source can be a process element
(e.g., a random number generator). If there is no process
contract with this particular asset on the output, then
the signatures of the method definitions mapped to the
process are collected. But, the asset may originate in
the process as a result of a transformation (e.g., a join
of two assets). In this case, the assets on the contract
inputs are traced backwards reaching either an external
entity, a data store, or a process with no contracts im-
pacting the traced asset. The signatures of the method
definitions mapped to the traced element are collected
as sources.

Allowed sinks. We collect the sink method signa-
tures from [5, 59] (excluding methods of Android spe-
cific packages) and exclude the allowed sinks. The al-
lowed sinks are maintained for each confidential asset.
These are method implementations mapped to SecDFD
elements where the confidential asset exits the system
(i.e., external entities and data stores). For example,
the secret flowing into the Plugin (data flow 10 in Fig.
2) is expected to flow there. Therefore, we consider the
Plugin as an allowed sink. However, since the Plugin
can not be mapped to the implementation, we instead
consider the method implementations mapped to the
Decrypt data process as allowed sinks.

Attacker zones. The SecDFD allows the user to
specify attacker zones, which denote what elements are
observable by the attacker. For each asset, we collect
signatures of all the method definitions mapped to el-
ements of attacker zones and add them to the list of
sinks and (if needed) remove them from the allowed
sinks. In this way, the user is able to influence the se-
curity policy of the SecDFD, and perform an analysis

12

Fig. 7: Architecture of the implementation

assuming over-exposed components or APIs. This kind
of what-if analysis can be useful to identify the impact
of a security mitigation on the design level.

5 Tool Support

In this section we give a quick overview of the imple-
mented tool and describe how to work with the tool
using the provided user interface. We show how to cre-
ate a mapping between a SecDFD and its implementa-
tion and how to verify the implementation for security
compliance with the SecDFD.

5.1 Implementation

The approach is implemented and packaged as a pub-
licly available Eclipse plugin [55]. The architecture of
our implementation is shown in Fig. 7. Reused com-
ponents and external libraries are shown in dark gray.
Components developed for [54] and adapted as part of
this work are shown in light gray. Entirely new com-
ponents are shown in white. Our implementation is
structured according to the two main contributions of
this work. First, we have the semi-automated creation
of mappings realized in the component Mapping, and
second, the security compliance checks realized in the
SecurityChecks component.

Semi-automated mappings. For the creation
of mapping suggestions we implemented the name
matches and the patterns shown in Section 3 in hand
written-java code. The implementation leverages an ex-
isting implementation for modeling SecDFDs using an
Xtext DSL with editor support [71]. Also, we use an
existing plugin for generating the Program Model from
Java source code [56]. The SecDFD and the PM are
accessed through the Java APIs provided by the com-
ponents realizing the models.

Using the Eclipse API, an integration into the Java
source code editor is provided. For working with the
SecDFD the textual editor is provided by the SecDFD
component. In addition, we provide a graphical Editor
based on the Sirius framework3. For showing the pro-
posed mappings to the user, we registered a view in the
Eclipse IDE. As a single system is usually described
in multiple SecDFDs, we extended the implementation
of this view to support multiple SecDFDs at the time.
Details on how the user interacts with our implementa-
tion are presented in Section 5.2. Created mappings can
be accessed through a wizard that shows all SecDFDs
within a project as well as all existing mappings.

Access to the mappings is provided to other com-
ponents though a Mapping interface, e.g., for the veri-
fication of SecDFD contracts. This interface allows to
query the mappings in both directions, for mappings to
a given SecDFD element and mappings to PM elements
for a single or multiple SecDFDs.

Security checks. The implementation of the se-
curity compliance checks is following the structure of
Section 4 and is separated into two components. One
component for performing optimized data flow analyses
(DataFlow) and one for the verification of the contracts
specified in a SecDFD (ContractVerification).

In this work, we perform the data flow analysis us-
ing FlowDroid [6], a state-of-the-art taint analyzer for
Android applications, but also applicable to Java pro-
grams. The 2.7.1 release of FlowDroid was obtained
from its release website4 and is imported as a library in
our plugin.

FlowDroid raises an alarm if and only if an object
flows from a predefined list of source methods (i.e.,
these objects are tainted) into sink methods (i.e., they
violate the security policy). The sources and sinks must
be identified and are passed as parameters to the ana-
lyzer. To simply the analysis, FlowDroid relies on capa-
bilities of the Soot compiler framework [38] which con-
verts Java bytecode into the Jimple [72] intermediate
code representation. This makes the analysis in Flow-
Droid precise as it is flow-sensitive (the call graph is
aware of the order of statements) and context-sensitive
(the call graph is enriched with the context of the
callees). In addition, the Jimple representation is able
to handle Java reflection, but only for reflective calls
where the types of all referenced classes are known. The
analysis in FlowDroid is also object-sensitive (i.e., the
call graph distinguishes method invocations on differ-
ent object instances) since it uses access paths as taint
abstractions. In general, taint analyzers consider only

3https://www.eclipse.org/sirius/
4FlowDroid Release Site: https://github.com/

secure-software-engineering/FlowDroid/releases

13

explicit flows for performance reasons [27], but Flow-
Droid also supports tracking implicit flows and shows
high performance results on benchmarks (86% preci-
sion and 93% recall on DroidBench [6]). We refer the
interested reader to [4] for more details. The DataFlow
component of our implementation executes FlowDroid
over its Java API. Following Section 4.2, we execute
FlowDroid for every asset in the SecDFD taking its set
of allowed sinks and possible sources into account.

The contract verification is again split into two sub-
components. One for the verification of the forward
and join contracts (ProcessingContracts) and one for
the verification of the encrypt and decrypt contracts
(CryptoContracts). In both sub-components we im-
plemented the checks as introduced in Section 4.1 using
hand-written Java code.

5.2 Using the Tool

The target audience of the tool are software develop-
ers with training in the principles of software architec-
ture. After the installation of the required packages,
the program is started as a running Eclipse instance.
First, the developers import the desired Java project.
Second, they manually create one or several SecDFDs
for representing the high-level architecture and security
properties of the project. They can do so with a tex-
tual or graphical syntax (one can be generated from
the other). Fig. 8 shows screenshots of the user inter-
face after this step is completed. On the left hand side
of the figures, users can see the Package Explorer. The
top two windows are used for displaying the source code
(left) and the SecDFD (right). The bottom windows are
used for displaying and defining the mappings. Next,
using context menu entries, the developers trigger the
automated generation of a PM from the source code,
and start the first iteration of the semi-automated pro-
cess for mapping the SecDFD elements to source code
elements (see Sect. 3).

At the start of each iteration, the developers are
shown a list of suggested mappings. Since one DFD el-
ement is usually mapped to several program elements,
the results are grouped by the DFD elements. For each
DFD element, the list of mapped PM elements is shown,
each with its path in the source code. The developers
can interact with the tool by accepting, rejecting, and
manually defining mappings. A suggested mapping is
accepted or rejected with a right-click on the entry and
selecting accept or reject, respectively. Once a mapping
is accepted, corresponding in-line markers are created
on the SecDFD and in the source code. Double-clicking
a mapping will open the correct source file and navigate
to the correct line in the file. Accepted mappings can

always be rejected. If all the suggested mappings are
correct, the developers can select accept all. Rejected
mappings will never be suggested again. Manual defini-
tion works by right-clicking and selecting Map Selection
to SecDFD on source code elements. At the end of the
iteration, developers can either stop or select continue
to trigger a new search refining the present mapping.

Finally, the developers can execute security compli-
ance checks by pressing a button. The contract viola-
tions and leaks identified by FlowDroid are presented to
the user with error and warning markers on the SecDFD
model. At any moment, the developers can extend the
list of project-specific methods signatures for crypto-
graphic operations, and execute the checks again. Simi-
lar to manual definition, they can right-click the source
code elements and select the appropriate menu item.

6 Evaluation

The evaluation of our approach has three parts. First,
we conducted an experiment to evaluate the automated
mapping creation (Section 6.1). Next, we conducted ex-
periments to evaluate the verification of SecDFD con-
tracts in implementation (Section 6.2), and the opti-
mization of data flow analysis by extracting project-
specific sources and sinks from SecDFDs (Section 6.3).

Table 1 depicts the characteristics of five open
source Java projects used in our studies.

Jpetstore [47]. This is a web application built on
top of MyBatis 3, Spring and the Stripes Framework.
This is an example with very few classes, implement-
ing the basic functionalities of a web store. In princi-
ple, the users are able to create their accounts, browse,
and order goods online. Jpetstore has been designed as
minimal demonstration application for MyBatis, which
should have a good design and documentation. The de-
velopers tried to strictly follow the MVC pattern.

ATM simulation [13]. This is a simulation for an
ATM machine developed for academic purposes. The
ATM simulation implements the main procedure of a
control system. Upon start-up a new session is initi-
ated, and the users are able to insert their card and
PIN number. The session continues upon a correct PIN
entry, and provides the users with the option of a with-
drawal, deposit, balance inquiry, and money transfer.
After a completion of desired transactions, the ATM
returns the card and optionally prints the receipt.

Eclipse Secure Storage [21]. As described in Sec-
tion 2, Eclipse Secure Storage is used for ensuring se-
cure storage and management of sensitive data within
the developer’s Eclipse workspace. The secure storage
allows for plugins to authenticate and have controlled
access to workspace resources.

14

a: UI with the textual syntax

b: UI with the graphical syntax

Fig. 8: Screenshots of the UI in Eclipse

Table 1: Projects considered in the evaluation

source code DFD

project lloc classes methods elements

jpetstore 1,221 17 277 47
ATM simulation 2,290 57 225 85
Eclipse Secure Storage 2,900 39 330 41
CoCoME 4,786 120 512 44
iTrust 28,133 423 3,691 31

15

CoCoME [35]. CoCoMe is a platform for collabora-
tive empirical research on information system evolution
[32]. This platform helps engineers manage different as-
pect of software evolution, such as the system life-cycle,
versioning artifacts, and comprehensive evolution sce-
narios. The implemented system is a cash register.

iTrust [45]. This example is a web application for
hospitals which allows the hospital’s staff to manage
medical records of patients, based on 55 use cases. The
example originally stems from a course project, has
been maintained by the Realsearch research group at
North Carolina State University, and was used as an
evaluation example in research papers before [14]. De-
tailed requirements describing different activities are
available [45]. However, the available requirements and
use cases mostly describe very simple tasks and only a
few of them are realized in the implementation.

6.1 Evaluation of Mappings

The purpose of this study was to evaluate the cor-
rectness of the suggested mappings. In what follows,
we briefly describe the design of the experiment, the
projects, and the results.

Design of study.We conduct this experiment with
all five open source projects from Table 1. To evaluate
the correctness of the suggested mappings, we set up
an experiment to compare a ground truth of manually
created mappings with the generated mappings for each
of the five considered projects. The iterative approach
involves the user to guide the generation of mappings in
the desired direction. As per this design choice, we in-
tentionally investigate the correctness of the automated
mappings and the impact of the user separately. Con-
sequently, the evaluation aims to answer the following
research questions.

RQ1. What is the correctness of the automated map-
pings generated by the plugin? Wemeasured correctness
in terms of precision and recall (dependent variables).
Conventionally, precision (TP/(TP+FP)) is measured
as a ratio between the true positives (i.e., correct map-
pings) and all generated mappings (including the false
mappings). A true positive TP is a correct mapping
between the source code and the DFD element which is
listed in the ground truth. A false positive FP is a map-
ping between the source code and DFD element that is
not listed in the ground truth. Recall (TP/(TP +FN))

is measured as a ratio between the true positives and all
correct mappings (including the overlooked mappings).
A false negative FN is a mapping between the source
code and the SecDFD element which is present in the
ground truth, but has not been identified.

RQ2. What is the impact of the user on the correct-
ness of mappings? The implementation automatically
derives trivial mappings from the user defined map-
pings, raising the recall before a new iteration starts.
Therefore, the impact of the user defined mappings is
measured as the difference in recall before, and after
the added mappings.

Execution. The experiment was executed by the
first and second author. The authors worked on the
projects individually and compared their results at each
step. First, the authors created the SecDFDs for all
five projects models manually. To this aim, the au-
thors inspected all available documentation (including
the source code) and reverse engineered a high-level ar-
chitecture. Second, a ground truth was created for each
SecDFD by following the execution of the modeled sce-
narios and manually mapping the executed methods
and transferred data to the processes and assets of the
according step. The ground truth is a JSON file with a
list of correspondence mappings between the elements
of the SecDFD and a uniquely identifiable location of
the source code element. Third, the implemented plu-
gin was used to find the automated mappings in several
iterations. Each iteration included accepting, rejecting
the automated mappings, and defining mappings man-
ually by highlighting elements in the source code and
specifying the corresponding SecDFD elements. After
each iteration the precision and recall of the automated
mappings were logged.

Results. This study shows promising results for
guiding the user in the discovery of compliance vio-
lations. In particular, Table 2 shows measurements of
high precision and recall only after a few iterations for
realistic Java projects. Each iteration consists of an au-
tomated, and a manual (user input) phase. We present
the precision and recall for the automatically suggested
mappings in each iteration. We also depict the amount
of manually accepted, user defined, the sum of all ac-
cepted and user defined, rejected mappings, and the
impact of the user defined mappings on recall (in that
order). Notice that the later iterations make use of the
manually defined mappings.

RQ1. We start by reporting the correctness of the
automated mappings in the first iteration. The average
precision of the first iteration is 50.5%. On average, the
recall of the first iteration is 69.8%. Yet, both the preci-
sion and the recall increase after the first iteration. On
average, the final precision and recall of the automated
phase are very good (87.2% and 92%, respectively).

The average difference between the recall of the sec-
ond iteration and the the user-impacted recall of the
first iteration (last column in Table 2) is 4.5%. This
means that on average, the automated search was able

16

Table 2: Results of the mapping after each iteration

automated manual

project it. precision[%] recall[%] accept+u (
∑

) reject recall[%](∆)

jpetstore 1 56.1 51.1 23 + 3 (26) 18 57.8 (+6.7)
2 96.4 60.0 1 + 3 (30) 1 66.7 (+6.7)
3 96.8 66.7 0 + 5 (35) 1 77.8 (+11.1)
4 97.4 82.2 2 + 3 (40) 1 88.9 (+6.7)
5 100 93.3 2 + 3 (45) 0 100 (+6.7)

ATM 1 72.0 40.0 18 + 3 (21) 7 46.7 (+6.7)
simulation 2 67.6 51.1 2 + 5 (28) 11 62.2 (+11.1)

3 70.5 68.9 3 + 5 (36) 11 80.0 (+11.1)
4 76.6 80 0 + 4 (40) 13 88.9 (+8.9)
5 95.5 93.3 2 + 3 (45) 2 100 (+6.7)

Eclipse 1 73.0 90.5 40 + 1 (41) 14 92.9 (+2.4)
sec. storage 2 67.7 100 1 + 0 (42) 12 —

CoCoME 1 27.9 77.3 17 + 1 (18) 44 81.8 (+4.5)
2 86.4 90.5 1 + 1 (20) 2 90.9 (+0.4)
3 90.9 83.3 0 + 2 (22) 4 100 (+16.7)

iTrust 1 23.5 80.0 8 + 1 (9) 26 90.0 (+10.0)
2 81.8 90.0 0 + 1 (10) 2 100 (+10.0)

to increase the recall between the first and second itera-
tion by 4.5%. On the other hand, the average difference
between the user-impacted recall of the second itera-
tion and the recall of the third iteration is minimal.
This means that, the automated search was not able to
increase the recall significantly between the second and
third iteration.

RQ2. On average, the user accepted less (7) map-
pings then they rejected (9.6), and defined only 2.6

mappings manually. However, in three cases (jpetstore,
ATM simulation, Eclipse Secure Storage) the user ac-
cepted more mappings then rejected. This means that
the user could quickly scan the suggested mappings and
eliminate the ones that are obviously wrong. Overall,
adding a few mappings manually resulted in a more
fruitful next iteration. For instance, adding three map-
pings manually in the first iteration of evaluating the
ATM simulation resulted in two new correct mappings
(see accepted mappings of the second iteration).

On average, the user impact on the recall was an
increase of 7.9%. This means that the users were indeed
able to guide the discovery of compliance violations.
Further, the users had a larger impact on increasing
the recall in later iterations compared to the automated
search (7.9% vs 4.5%). Notice, that on average 75% of
all correct mappings (TP) are suggested to the user and
do not have to be manually defined.

6.2 Evaluation of the SecDFD Contract Verification

In this section, we evaluate if the proposed contract
checks (Section 4.1) can effectively detect convergence,
absence and divergence between the planned security
properties and the implemented security mechanisms.

Design of study. In this part of the evaluation,
we focus on the effectiveness of the SecDFD contract
verification to answer the following research question.

RQ1. How effective is the proposed approach in the
verification of contracts? It is important to evaluate
if the proposed checks can effectively be used in the
context of realistic projects. To this aim, we have used
open source Java projects, as opposed to illustrative
projects. Further, as we are interested in the effective-
ness of the proposed compliance checks, we execute the
evaluation for all process contracts, encrypt, decrypt,
forward, and join. We evaluate the approach with per-
fectly compliant SecDFDs (i.e., verification results only
include convergences, and there are no absence or diver-
gence violations) and with SecDFDs with injected pro-
cess contracts. In case of the fully compliant SecDFDs,
all the detected compliance violations are false positives
(FPs). Injecting the process contracts allows us to mea-
sure expected compliance violations (e.g., an absence of
a join contract), which we mark as true positives (TPs).
If the expected compliance violation is not found (ac-
cording to the injected contract), we mark it as a false
negative (FN). Finally, if we find unexpected compli-
ance violations we mark them as false positives (FPs).
As a term of measure, we adopt the well-understood

17

precision (TP/(TP+FP)) and recall (TP/(TP+FN))
of detected compliance violations.

Execution. As subjects of this evaluation we use
two subjects from the introduced test corpus, the
Eclipse secure storage and iTrust. 5 For both projects,
we created one additional SecDFD. In what follows, we
refer to the new SecDFDs as Eclipse 2 and iTrust 2.
The two SecDFDs created for the study in Section 6.1
are Eclipse 1 and iTrust 1. As the created SecDFDs (all
four) have been reverse engineered from the implemen-
tations, these are perfectly compliant.

First, we apply the contract verification to the two
projects. We expect to detect no divergences or ab-
sences between the SecDFD and the implementation.

Afterward, we inject violations into the systems and
check if these are detected. The violations are injected
by adding random contracts to the SecDFDs that are
not implemented. After every injection, we execute the
contract verification and check if the expected violation
has been detected, if additional false alarms have been
raised, or if expected convergences are not detected any
longer. We generate injections of all contract types (en-
crypt, decrypt, forward, and join). Regardless of the
contract type, we inject all possible contracts that have
not been specified on the initial SecDFD.

New encrypt and decrypt contracts can be injected
independently of each other. An encrypt contract can
be injected to every process that has no encrypt con-
tract in the initial SecDFD and a decrypt contract to
every process that has no decrypt contract. Accord-
ingly, it can happen that we inject a decrypt contract
to a process that has already an encrypt contract and
the other way around.

For the injection of forward and join contracts, we
inject for every process of a SecDFD all possible con-
tracts that are not already specified. To do so, we cal-
culate all possible combinations with one outgoing flow.
To calculate the combinations we consider all incoming
and outgoing assets. For instance, for a process with two
incoming and two outgoing assets (and no specified for-
ward, or join contract), we inject 6 possible contracts.
Every incoming asset can be forwarded to every outgo-
ing asset (4 forward contracts) and the pair of incoming
assets can be joined with both outgoing assets as target
(2 join contracts). If a combination is equivalent to an
existing contract, it is omitted.

5We have not included other projects from the test cor-
pus as less security specifications were available from the
documentation, and the implementation of some projects
did not include any encryption and was less interesting to
analyze from the security perspective (e.g., ATM).

Results. The results of the evaluation are in favor
of using our approach to execute security compliance
checks between design and implementation.

For the execution of the verification on the fully
compliant SecDFDs, we achieved 100% precision and
recall. But, the effectiveness of the proposed contracts
must also be studied in the context of imperfectly
mapped SecDFDs. In what follows, we discuss the effec-
tiveness of the approach in detecting absences of spec-
ified contracts. Tables 3 and 4 depict the results of the
contract verification based on the injected contracts.
We show the results per SecDFD and overall.

For evaluating the verification of encrypt and de-
crypt contracts, we injected 200 additional encrypt and
decrypt contracts into the SecDFDs. Most injected con-
tracts (except 11) were correctly detected as absent.
The 11 undetected absent contracts belong to the same
SecDFD (of the iTrust project). After investigating
them, we noticed that all of them have been injected
into processes that already have an encrypt or a decrypt
contract. The reason for this defect is that the project-
specific specified signature (in the list of well-known
cryptographic operations) for encryption is also spec-
ified for decryption. As iTrust uses a crypto-function
on which a parameter is used for specifying whether a
encryption or decryption should be performed, this is a
correct classification. Since, we only check for at least
one method call for encrypt/decrypt, we can not detect
an absence in this particular case.

To evaluate the forward and join checks we injected
232 contracts (all the possible contract types and com-
binations for every process) into the SecDFDs. In con-
trast to the cryptographic contracts verification, the re-
sults presented in Table 4 paint a more diverse picture.
On the one hand, the processing contracts verification
reaches a very good precision (98.21% and 87.01%) and
recall (70.51% and 82.71%) on the iTrust project. On
the other hand, the verification performs slightly worse
when executed on the Eclipse secure storage project.
In addition, there is a huge difference between the two
SecDFDs on the Eclipse secure storage.

In particular, the verification did not work for the
SecDFD shown in Fig. 2 (Eclipse 1). There are two
reasons for this poor performance.

First, external entities are not part of the system
and can not be mapped to elements from the system.
For example, the external entity Plugin in Fig. 2 rep-
resents an arbitrary plugin installed into the Eclipse
instance that is unknown to the Eclipse secure storage.
This arbitrary plugin accesses the secure storage us-
ing a Java API specified on implementation level. Simi-
larly, the data can be stored in a cloud, to which access
is controlled via an API. In such cases we attempt at

18

guessing possible incoming flows by considering, e.g.,
every parameter of the methods mapped to a process
as possible source but also all returns of called meth-
ods that have not been mapped to any process. For
instance, the Get_value process (Eclipse 1) is heavily
interacting with an external entity and data store which
results in very many guesses weakening the results.

Second, despite the reduction when extracting flows
(described in Section 4.1), the overlapping asset types
caused both FPs and FNs. In example, this communi-
cation of Get_value is implemented by mainly using as-
sets whose mappings are overlapping (mainly strings).
In general, representing sensitive objects with string
values is prevalent in Eclipse secure storage. This also
effected the performance of the processing contracts
verification on the second SecDFD (Eclipse 2). Yet,
the verification still achieves a recall and precision of
50%. This happened because the asset types of injected
contracts overlapped with the asset types of the imple-
mented contracts. For instance, consider two existing
and fulfilled forwards of assets that are both mapped
to the type String. On Fig. 2 for instance, these are the
forward of id on the Get_value process and the for-
ward of the data to encr. data. 6 In addition to these
expected forwards, there are some additional uses of
strings that are not representing assets, e.g., a param-
eter representing a default value in the implementation
of the Get_value process. Now we inject a join of id and
data to encr. data.. As the default value is a guessed
flow, we could easily ignore it before this injection but
now it exactly contributes to the injected join contract
and we have to report this contact as convergence. How-
ever, we cannot any longer report the forward of data
as convergence as the flow pattern is now mapped to
the injected join contract. Accordingly, we now report
a false divergence. In this case, at least the user would
have been warned about a violation but the information
about the assets was not entirely correct.

As the iTrust project does not have as many over-
lapping asset-type mappings and the SecDFDs have less
external entities, the results are much better for this
subject. Again, the missed violations are mainly due to
overlapping asset mappings.

Overall, the contract verification is fairly precise
(80%) and reaches the recall of more than 65%. Gener-
ally, the contract verification works and is able to bridge
the huge gap between early design models and concrete
implementations. Though, it suffers from overlapping
mappings. Also, missing API specification of the system
(i.e., issue of mapping external entities), has a negative
impact on the performance of the contract verification.

6Note that the Get_value encrypts the data only if it is
stored in plain, else it forwards it.

Table 3: Results of evaluating the cryptographic con-
tracts verification

Eclipse iTrust

1 2 1 2 Overall

TPs 12 48 59 70 189
FPs 0 0 0 0 0
FNs 0 0 11 0 11

precision 100% 100% 100% 100% 100%
recall 100% 100% 84.28% 100% 94.5%

Table 4: Results of evaluating the processing contracts
verification

Eclipse iTrust

1 2 1 2 Overall

TPs 1 29 55 67 152
FPs 0 28 1 10 39
FNs 14 29 23 14 80

precision 100% 50.88% 98.21% 87.01% 79.58%
recall 6.67% 50% 70.51% 82.71% 65.52%

6.3 Evaluation of Optimized Data Flow Analysis

The purpose of this study is to evaluate whether using
our approach helps to reduce the number of false alarms
raised by an existing data flow analyzer.

Design of study. We investigate the performance
of an analysis with FlowDroid [6] initialized with
project-specific sources and sinks. To this aim, we built
three configurations of sources and sinks. Apart from
the first configuration (Plain), we execute the ana-
lyzer for each SecDFD asset separately. This experi-
ment was conducted with two projects from Table 1,
namely, Eclipse Secure Storage [21] and iTrust [45]. To
the best of our knowledge, both projects are free of data
flow leaks. Therefore, all the reported leaks by the an-
alyzer are by default labeled as false alarms (FPs). We
pose one research question.

RQ1. To what extent can the mapped design model (with
our approach) be used to reduce the number of false
alarms raised by a data flow analyzer?

To answer the research question, we have set up
three configurations of sources and sinks.

Plain. We execute the analyzer with the list of
source signatures shipped with FlowDroid [5, 59](herein
Default sources) and sink signatures (herein De-
fault sinks). Apart from Java method signatures,
this list contains signatures of methods specific to An-
droid source packages. We removed such signatures to
avoid unnecessarily searching for them with FlowDroid.

19

Note, that this reduced the list of source signatures
from 18,077 to 1,229 and sink signatures from 8,315
to 1,310. As a result of this filtering, the Android SQL
database API (SQLite) was also removed. To analyze
Java projects, we manually added signatures from the
Java SQL API to the above list of sources and sinks.

Partly Opt. We execute the analyzer (for each
confidential asset) with project-specific source signa-
tures (herein SecDFD sources) and Default sinks.
The SecDFD sources are extracted per SecDFD as-
set, as described in Section 4. Note that the SecDFD
sources are extracted independently, and therefore
may not include any of the Default sources.

Fully Opt. We execute the analyzer (for each con-
fidential asset) with SecDFD sources and without
allowed sink signatures (herein SecDFD sinks). The
list of allowed sink signatures is extracted per SecDFD
asset, as described in Section 4. The SecDFD sinks
are obtained by removing the allowed sink signatures
from the Default sinks.

The results are compared in only terms of the num-
ber of FPs, as no actual leaks (TPs) exist in the an-
alyzed projects. In addition, we measure the number
of extracted project-specific source signatures, and the
number of removed sink signatures. A false alarm (FP)
is a detected leak with a unique pair of source and sink
method signatures, regardless of the access path where
the leak is detected. The rationale for counting unique
signature pairs is that comparing access paths would be
computationally expensive and not useful for the pur-
pose of this study. For instance, consider an implemen-
tation of a function where the number of recursive calls
depends on a conditional. In this case, at least two ac-
cess paths (when the conditional evaluates to true and
false) are detected. But the DFD does not specify such
level of detail, thus we can not distinguish between the
access paths of the detected data leaks. The false alarms
are aggregated per SecDFD, to enable comparison with
the Plain configuration.

As we execute the analysis for each SecDFD asset,
we measure the project specific sources and sinks in the
same manner. Specifically, to measure the number of
project-specific sources we count each discovered source
signature per SecDFD asset. Similarly, to observe the
number of times we are able to remove an allowed sink,
we count each signature which has been removed for a
unique asset.

Listing 1: Configuration of FlowDroid used in this
study
Infoflow result = new Infoflow("", false , null);
result.setSootConfig ((options , config) -> {
config.setCallgraphAlgorithm(CallgraphAlgorithm.

AutomaticSelection);

Table 5: Average false alarm reduction for the differ-
ent configurations (aggregated per project)

Configuration FPs on Eclipse FPs on iTrust Overall

Plain 15.65 2.7 9.18
Partly Opt. 9.45 (↓ 60%) 13.1 (↑ 485%) 11.28
Fully Opt. 5.95 (↓ 37%) 1.9 (↓ 85%) 3.93

Total (↓ 62%) (↓ 30%) (↓ 57%)

config.setImplicitFlowMode(ImplicitFlowMode.
AllImplicitFlows);

config.setAliasingAlgorithm(AliasingAlgorithm.
FlowSensitive);

config.setStopAfterFirstKFlows (100);
});
result.setTaintWrapper(new EasyTaintWrapper(

Collections.emptyMap ()));
return result;

Execution. Both projects used in this study in-
clude two SecDFDs, representing two different scenar-
ios. Listing 1 shows how we configured FlowDroid for
all our executions. This configuration was set-up to
achieve the best performance and most conservative
analysis, in accordance with the literature [4]. We con-
figure FlowDroid to use the default call-graph construc-
tion algorithm (SPARK). In addition, we have enabled
implicit flow tracking and flow-sensitive aliasing. Note
that, without tracking implicit flows, Fully Opt. pro-
duces no false alarms, while Plain still reports many.
Finally, we limit the static analysis to the projects, ex-
cluding third-party libraries (line 11 in Listing 1), and
stop the analyzer after identifying 100 leaks per run.
We have implemented and executed the experiments
using the JUnit Plugin Test framework with a limit of
6 GB of memory consumption (for each execution of
the analyzer). The amount of allowed memory and the
maximum number of identified leaks were determined
empirically. We have executed random parts of the ex-
periment with different configurations repeatedly and
didn’t get different results.

Results. Fig. 9 shows the false alarms raised by the
analyzer after three configurations per SecDFD model.
The average number of false alarms is aggregated per
project in Table 5 and the change in the number of
false alarms is presented. The main takeaway of the
evaluation is that using our approach we were able to
a) extract project-specific sources of secret data, and b)
reduce the number of false alarms (up to 62%) raised by
the data flow analyzer. First we discuss the reduction
with only project-specific sources. Second we discuss
the reduction with removing allowed sinks.

RQ1. Our measurements from the Partly Opt.
configuration show that deriving project-specific
sources from the SecDFD is possible and can re-

20

Plain Partly Opt. Fully Opt.

E
clipse 1

E
clipse 2

iTrust 1
iTrust 2

FP FP FP

0

10

20

30

0

10

20

30

0

10

20

30

0

10

20

30

N
um

be
r

of
 R

ep
or

te
d

Le
ak

s

Fig. 9: False alarms (FPs) raised by the analyzer after
three configurations of sources and sinks per SecDFD
(Eclipse Secure Storage on top, iTrust on bottom)

duce the number of FPs. For instance, in case of
Secure Storage we achieved an average 60% re-
duction of false alarms (Table 5). However, adding
project-specific sources can also lead to a rise in
false alarms (as observed on iTrust). The number
of project-specific sources is realistic considering the
project size (e.i., 11 for Secure Storage and 10 for
iTrust). In addition, the project-specific source meth-
ods are in fact accessing sensitive resources (e.g., the
org.eclipse.equinox.internal.security.storage.
SecurePreferences.get(String, String, Secure-
PreferenceContainer):String is called when fetch-
ing the cashed confidential credentials.) But, the
derived sources depend heavily on the mappings. Since
iTrust is implemented with the dynamic Java Server
Pages, FlowDroid can not analyze the entire behavior
of the program. Therefore, we are only able to reduce
the number of FPs after removing allowed sinks.

We found that the number of FPs can be further re-
duced by removing allowed sinks from the list of sinks
passed to the analyzer (Fully Opt. configuration). We
have been able to remove 3 sinks (all from java.lang
package) for Eclipse Secure Storage and 36 sinks (all
from java.sql package) for the iTrust project. These
sinks were included in the previous configurations, but
were derived in this configuration as allowed for certain
SecDFD assets. In particular, we observed a further
37% average reduction of FPs for the Eclipse Secure

Storage project, when comparing the analysis results to
the previous configuration (Partly Opt.).Compared
to the first configuration (Plain), considering only
project-specific sources and removing allowed sinks re-
duced the number of false alarms on average by 62%. As
project-specific sources were hard to find for the iTrust
project, we compare the analysis results to the initial
configuration (Plain). Removing the allowed sinks in
iTrust reduced the number of FPs on average by 30%.

7 Discussion and Threats to Validity

Discussion. The proposed approach was developed
and evaluated focusing on confidentiality. However, our
approach is more foundational and can be generalized
to check the compliance of other security and safety
properties. For instance, integrity could be analyzed
as a dual to confidentiality [12] (instead of confiden-
tial sources, the developer needs to specify the trusted
sources and sinks). Further, our approach can be ex-
tended to support compliance analysis of accountabil-
ity requirements of asset manipulations (as stipulated
by the design) with respect to the implemented logging
mechanisms. Beyond security properties, this approach
could be used to analyze compliance of safety proper-
ties (e.g., the implementation of processes with outgo-
ing data flows can be checked to never return data with
null fields). Finally, our approach may be extended to
support compliance analyses of real-time properties of
distributed systems, such as liveliness (the implemen-
tation could be checked for unbound loops).

The complexity of the implementation is esti-
mated as follows. Worse case complexity of the heuris-
tic algorithm for finding the mappings is exponen-
tial (O(elements(SecDFD) ∗ elements(PM))), how-
ever the SecDFD models are much smaller compared to
the program model. Also, the rules for corresponding
elements (Section 3.1) significantly reduce the search
complexity. In contrast to the implementation of for-
ward and join checks, the complexity of checking an
encrypt/decrypt contract is linear. Though a complete
complexity analysis of the forward and join checks was
not conducted, we observed that the number of types,
members, and accesses are the most influential factors.
The reader should note that we do not attempt at trac-
ing the entire implementation, but only targets of the
mappings (smaller chunks), therefore the runtime com-
plexity of the checks is fair, also for realistic-sized ap-
plications.

Our evaluation of the mappings suggests no ma-
jor scalability issues when applying the approach to
realistic applications. The user seldom defined map-
ping manually (on average, 75% of mappings were sug-

21

gested by the algorithm) and in most applications, ac-
cepted more mappings than rejected. In principle, the
approach could still be used with some falsely accepted
mappings, therefore the user interface also includes al-
lowing all suggested mappings. Undoubtedly, the im-
pact of such false mappings on the performance of the
checks would need to be further investigated.

Threats to validity. The main threat to external
validity is our selection of samples, based on a lim-
ited number of open source projects, partially origi-
nating from a teaching context. Regarding the validity
of the studies conducted to evaluate the security com-
pliance checks, the open source projects do not con-
tain well-known data flow leaks, thus we consider them
secure. The rationale for our selection was the man-
ual effort that was required for creating the ground
truth of our technique, a full mapping between high-
level DFD elements and low-level program elements.
However, as a result, the generalizability of the results
to larger project in other domains is limited. To mit-
igate this threat, the considered projects were chosen
to be representative for realistic projects by providing
a good documentation, including architectural informa-
tion (such as, wikis, use cases, scenarios, requirements,
state charts, and the like). The available documenta-
tion enabled building good design models, close to the
intended architecture. Further, we partly mitigate this
threat by experimenting with contract injections as part
of our evaluation. We plan to extend the evaluation
in the future to include a more comprehensive set of
projects.

Regarding internal validity, the main threat of our
evaluation is researcher bias. In absence of pre-existing
ground truths and design models, the ground truth and
design models for our evaluation were created manually
by the authors, possibly introducing a risk of creat-
ing a biased result. To mitigate this threat, the ground
truths and the design-level models were carefully dis-
cussed between all authors. The created models and
ground truths are of similar size and complexity and
are available online [55].

With respect to construct validity we consider the
threat of misinterpreting divergence, absence, and con-
vergence compliance violations in the context of design-
level models, implementation-level models, and viola-
tions detected by static code analysis. However, to the
best of our knowledge, our interpretations are in-line
with the existing literature [16].

8 Related Work

First, we discuss two most related works with respect
to security compliance of DFDs, and leveraging speci-

fications to optimize data flow analysis. Similar to our
work, these approaches are difficult to classify as for-
ward or reverse engineering solutions. Next, we posi-
tion our work in the context of forward and reverse
engineering literature.

More than a decade ago, Abi-Antoun et al. [2] pro-
posed conformance checks between the implementation
and DFDs. The authors automatically extract a DFD
(i.e., the source DFD) from the implementation. Next,
the user specifies a mapping (using Reflexion Models)
between a manually created high-level DFD and the
source DFD, which is then used to uncover inconsisten-
cies. The notion of extracting the source DFD is sim-
ilar to our extraction of the implemented data flows.
In contrast to the mappings with Reflexion Models,
our mappings are semi-automated using heuristics. Fur-
ther, the security analysis in [2] is performed on the
level of the DFD, while our security compliance checks
are developed by means of static code analysis. To the
best of our knowledge, this work is the sole attempt at
implementing security compliance checks between the
SecDFD and its implementation.

Recently, static code analysis techniques have been
developed to assure GDPR compliance of the im-
plemented systems with respect to privacy specifica-
tions [25, 33, 27]. Most relevant to our work, is the
proposed approach by Ferrara et al. [27] which uses the
privacy policy to fine tune and execute a taint anal-
ysis. The authors evaluate the approach by executing
a prototype analysis on a benchmark application. De-
riving the sources and sinks from the privacy policy is
similar to our idea of maintaining allowed sinks for each
SecDFD asset. But, the required GDPR policy needs to
be specified on the level of implementation (e.g., con-
crete fields as sources, and API method signatures for
sinks). In contrast, our approach can derive project-
specific sources and allowed sinks from the design, and
also performs security compliance checks with respect
to the design model.

UML models have been extensively studied in the
context of forward engineering solutions for checking
security compliance.

Muntean et al. [46] extend the UML statecharts
with security annotations (such as source function,
sink function, declassified parameter, etc.), generate the
source code in C, and implement static checks (using
the Smtcodan engine) to detect data flow violations.
Similar to our work, the authors leverage security in-
formation from the design to execute a static analysis,
and lift the detected violations back to the user (they
display them with sequence diagrams). However, com-
pared to DFDs, the gap between statecharts and source
code is smaller (e.g., DFDs can not express conditional

22

data flows, or sequence of data flows). Further, our ap-
proach with correspondence mappings can be used on
existing projects (no code generation is necessary).

IFlow [37] is an approach for specifying and ana-
lyzing information flow properties in distributed Java
applications. The proposed approach extends the UML
model with information flow properties, and uses it to
generate a Java code skeleton, and transform it to a
formal model supporting an interactive theorem prover.
The Java code skeleton (and manually completed pro-
gram) can be checked for standard information flow
properties, such as non-interference, using an existing
framework (i.e., JOANA). Similar to this work, IFlow
requires the developer to provide the security informa-
tion in the model, and leverages an existing static an-
alyzer. But, IFlow is model-driven and analyzes non-
interference in a more formal setting.

Fourneret et al. [28] combine model-based security
analyses using UMLsec [36] with the generation of secu-
rity tests. Security properties are specified and verified
on UML state machines. These models are then used
to generate tests for the implemented system. In con-
trast to us the considered state machines have to be
very close to the implementation. Further, Ramadan et
al. [58] use model transformation to automatically gen-
erate security-annotated UML class models [36] from
security-annotated BPMN models.

For the classical reverse engineering scenario
from source code to UML class models, Peldszus et
al. [53] propagate hand-crafted security annotations
from source code to the corresponding elements in au-
tomatically extracted class models.

Scoria [73] is a semi-automated approach for ex-
tracting and analyzing the Owner Object Graph anno-
tated with security properties (i.e., SecGraph) to find
security flaws in the architecture. First, The SecGraph
is extracted from a manually annotated implementa-
tion. Second, software architects can optionally refine
the SecGraph with additional annotations. Finally, soft-
ware architects can design queries to analyze the Sec-
Graph. Similar to our work, Scoria is an iterative semi-
automated approach analyzing security on abstracted
code representation. However, our work does not rely
on code annotations, and executes the security compli-
ance checks by means of static analysis.

Jasser [34] recently proposed an approach for an-
alyzing system behavior and detecting its discordance
with a set of useful security rules. The security rules
(modeled as Linear Time Logic (LTL) properties) are
expressed with a controlled natural language for de-
scribing architectural constraints. The system behavior
is extracted by means of dynamic analysis, using aspect-
oriented programming. Finally, before the security rules

can be executed, the source-level elements are manually
mapped to the architectural elements. On a high-level,
the idea of our work relates Jassers approach, in that,
an abstracted representation of code is mapped to a
higher-level model to analyze security compliance. In
comparison, our approach supports an automated dis-
covery of such mapping, and studies the compliance of
static security properties in the implementation.

Manual security reviews can be aided by automated
static (or hybrid) program analysis. Static Application
Security Testing (SAST) [26] tools aim to analyze the
program code of a software component and automati-
cally report the violations to developers, removing the
need for security experts reviewing large code bases.
Our approach relates to such mechanisms in that it
leverages static code analysis to evaluate security of
an implemented system. But, the SAST analyzes se-
curity of the implementation, while our approach fo-
cuses on analyzing the compliance of implemented secu-
rity to the intended (designed) security. Further, SAST
tools need to still be configured by security experts,
whereas our approach automatically derives project-
specific sources and sinks from the SecDFD model.

Duarte et al. [20] propose to use context informa-
tion of execution sequences for the extraction of labeled
transition system models from source code. While the
authors motivate their approach with the need for cor-
respondence between models and code, they only dis-
cuss the possibility to analyze the models using existing
tooling. The compliance checks introduced by Duarte et
al. [20] are performed similarly to the checks developed
in this work. In contrast, our approach supports com-
pliance checks between models and code. Regarding the
preparation for compliance checks, Duarte et al. reverse
engineer models that can be checked or compared to
existing models. In contrast, we recreate a mapping be-
tween existing models and their implementation. This
already includes a comparison with the existing mod-
els.

Beyond the security scope of this work, confor-
mance checking is generally a well-studied topic in
model-driven engineering. Paige et al. [48] use meta-
models as the common reference point to enable confor-
mance checks between diagrams representing different
views on a system. Diskin et al. [18] present a framework
for global consistency checks of heterogeneous models
based on constraints. By supporting the explicit specifi-
cation of overlaps between the considered models, they
avoid the need for a global meta-model. Expanding on
this work, König and Diskin [40] improve the efficiency
of this approach by supporting an early localization
of relevant parts of the models whose consistency is
to be checked. Reder and Egyed [60] propose an effi-

23

cient approach to consistency checking based on pre-
defined consistency rules. Estanol et al. [23] developed
an approach to check the conformance of process im-
plementation to UML and OCL models by translat-
ing them into petri-nets, and executing existing con-
formance checking techniques. However, none of these
works address security compliance checking between de-
sign and its implementation.

9 Conclusion and Future Work

This work has introduced a novel approach for tackling
the problem of automating the code-level verification
of planned security mechanisms. In particular, we have
developed a solution with tool support for executing
security compliance checks between an abstract design
model (the SecDFD) and its implementation (in Java).
To this aim, we developed a user-in-the-loop approach
for finding corresponding elements based on heuristi-
cally computed suggestions. Once defined, the corre-
spondence mappings are leveraged for an automated
security analysis of the implementation against the de-
sign. First, two types of security compliance checks are
executed: a rule-based check for a set of cryptographic
operations, and a local data flow check for data pro-
cessing contracts specified in the model. Second, the
mapped design is leveraged to initialize and execute a
state-of-the-art data flow analyzer over the entire Java
project. The results of the compliance checks (conver-
gence, absence, and divergence) are lifted to the atten-
tion of the user via the user interface of our tool.

Our approach was evaluated with three experiments
on open source Java projects (five in the first and two in
the second and third), focused on assessing the perfor-
mance from different angles. First, our evaluation has
shown a high precision (87.2%) of the automated sug-
gestions of mappings. Second, the rule-based security
compliance checks are very precise (100%) and rarely
overlook implemented cryptographic operations (recall
is 94.5%). In addition, the local data flow checks are
fairly precise (79.6%), but may overlook some imple-
mented flows (recall is 65.6%), due to the large gap
between the design and implementation. Finally, our
approach enables a project-specific data flow analysis
with up to 62% less false alarms.

Regarding future improvements, we note that ex-
tending the SecDFD with strongly typed assets could
improve the performance of the security compliance
checks. Strongly typed SecDFD assets could be mapped
to the implementation more precisely, which would
make the local data flow checks cleaner. In addition,
the missing mappings to the external entities could be

better approximated by relying on parsed API specifi-
cations (e.g, JavaDoc). Finally, the evaluation of the se-
curity checks could be improved by including more open
source projects, especially projects with well-known
data leaks.

Acknowledgements This research was partially supported
by Deutscher Akademischer Austauschdienst (DAAD) and
the H2020 AssureMOSS project that received funding from
the European Union’s Horizon 2020 research and innovation
programme under grant agreement No 952647. This paper
reflects only the author’s view and the Commission is not re-
sponsible for any use that may be made of the information
contained therein.

References

1. Abe T, Hayashi S, Saeki M (2013) Modeling Secu-
rity Threat Patterns to Derive Negative Scenarios.
In: APSEC, pp 58–66

2. Abi-Antoun M, Wang D, Torr P (2007) Checking
Threat Modeling Data Flow Diagrams for Imple-
mentation Conformance and Security. In: ASE, pp
393–396

3. Alshammari B, Fidge C, Corney D (2010) Secu-
rity Metrics for Object-oriented Class Designs. In:
ASWEC, pp 55–64

4. Arzt S (2017) Static Data Flow Analysis for An-
droid Applications. PhD thesis, Technische Univer-
sität Darmstadt

5. Arzt S, Rasthofer S, Bodden E (2013) SuSi: A Tool
for the Fully Automated Classification and Catego-
rization of Android Sources and Sinks. Tech. Rep.
TUDCS-2013-0114, University of Darmstadt

6. Arzt S, Rasthofer S, Fritz C, Bodden E, Bartel A,
Klein J, Le Traon Y, Octeau D, McDaniel P (2014)
Flowdroid: Precise Context, Flow, Field, Object-
sensitive and Lifecycle-aware Taint Analysis for An-
droid Apps. ACM Sigplan Notices 49(6):259–269

7. Axway Software, BizAgi Ltd, Bruce Silver Asso-
ciates, IDS Scheer, International Business Machi-
nesand MEGA International, Model Driven Solu-
tions, Object Management Group, Oracle, SAP
AG, Software AG Inc, TIBCO, Unisys (2014)
Business Process Model And Notation (BPMN).
OMG Standard formal/13-12-09, Object Manage-
ment Group (OMG), version 2.0.2

8. Baca D, Petersen K, Carlsson B, Lundberg L (2009)
Static Code Analysis to Detect Software Security
Vulnerabilities-does Experience Matter? In: ARES,
IEEE, pp 804–810

9. Bacon J, Eyers D, Pasquier TFM, Singh J, Papa-
giannis I, Pietzuch P (2014) Information Flow Con-

24

trol for Secure Cloud Computing. TNSM 11(1):76–
89

10. Berger BJ, Sohr K, Koschke R (2013) Extracting
and Analyzing the Implemented Security Architec-
ture of Business Applications. In: CSMR, pp 285–
294

11. Bernsmed K, Jaatun MG (2019) Threat Modelling
and Agile Software Development: Identified Prac-
tice in Four Norwegian Organisations. In: Cyber
Security, IEEE, pp 1–8

12. Biba KJ (1977) Integrity considerations for se-
cure computer systems. Tech. rep., MITRE CORP
BEDFORD MA

13. Bjork RC (2020) ATMExample. URL
http://www.math-cs.gordon.edu/local/
courses/cs211/ATMExample/

14. Bürger J, Strüber D, Gärtner S, Ruhroth T, Jür-
jens J, Schneider K (2018) A Framework for Semi-
automated Co-evolution of Security Knowledge and
System Models. JSS 139:142–160

15. Cook S, Bock C, Rivett P, Rutt T, Seidewitz E,
Selic B, Tolbert D (2017) UML Superstructure
Specification. OMG Standard formal/2017-12-05,
Object Management Group (OMG), version 2.5.1

16. De Silva L, Balasubramaniam D (2012) Control-
ling Software Architecture Erosion: A Survey. JSS
85(1):132–151

17. Deng M, Wuyts K, Scandariato R, Preneel B,
JoosenW (2011) A Privacy Threat Analysis Frame-
work: Supporting the Elicitation and Fulfillment of
Privacy Requirements. RE 16(1):3–32

18. Diskin Z, Xiong Y, Czarnecki K (2010) Specifying
Overlaps of Heterogeneous Models for Global Con-
sistency Checking. In: MODELS, pp 165–179

19. Dougherty C, Sayre K, Seacord RC, Svoboda D,
Togashi K (2009) Secure Design Patterns. Tech.
rep., Carnegie-Mellon University Pittsburgh, Soft-
ware Engineering Institute

20. Duarte LM, Kramer J, Uchitel S (2017) Using Con-
texts to Extract Models from Code. SoSyM 16:523–
557

21. Eclipse Contributors (2020) Eclipse Docu-
mentation – Secure Storage. URL https:
//help.eclipse.org/2020-06/topic/org.
eclipse.platform.doc.user/reference/
ref-securestorage-start.htm

22. Ehrig H, Rozenberg G, Kreowski HJ (1999) Hand-
book of Graph Grammars and Computing by
Graph Transformation, vol 3. world Scientific

23. Estañol M, Munoz-Gama J, Carmona J, Te-
niente E (2019) Conformance checking in uml
artifact-centric business process models. SoSyM
18(4):2531–2555

24. Faily S, Scandariato R, Shostack A, Sion L, Ki-
Aries D (2020) Contextualisation of Data Flow
Diagrams for Security Analysis. arXiv preprint
(arXiv:2006.04098), accepted at GraMSec

25. Fan M, Yu L, Chen S, Zhou H, Luo X, Li S, Liu
Y, Liu J, Liu T (2020) An Empirical Evaluation of
GDPR Compliance Violations in Android mHealth
Apps. In: ISSRE, pp 253–264

26. Felderer M, Büchler M, Johns M, Brucker AD, Breu
R, Pretschner A (2016) Security Testing: A Survey.
In: Advances in Computers, vol 101, Elsevier, pp 1–
51

27. Ferrara P, Olivieri L, Spoto F (2018) Tailoring
Taint Analysis to GDPR. In: APF, Springer, pp
63–76

28. Fourneret E, Ochoa M, Bouquet F, Botella J, Jur-
jens J, Yousefi P (2011) Model-Based Security Ver-
ification and Testing for Smart-cards. In: ARES, pp
272–279

29. Ganesan D, Keuler T, Nishimura Y (2009) Ar-
chitecture Compliance Checking at Run-time. IST
51(11):1586–1600

30. Goseva-Popstojanova K, Perhinschi A (2015) On
the Capability of Static Code Analysis to Detect
Security Vulnerabilities. IST 68:18–33

31. Hebig R, Quang TH, Chaudron MR, Robles G,
Fernandez MA (2016) The Quest for Open Source
Projects that Use UML: Mining GitHub. In: MOD-
ELS, pp 173–183

32. Heinrich R, Rostami K, Reussner R (2016) The
Cocome Platform for Collaborative Empirical Re-
search on Information System Evolution. Tech.
Rep. 2016,2, Karlsruhe Institute of Technology

33. Hjerppe K, Ruohonen J, Leppänen V (2019)
Annotation-based Static Analysis for Personal
Data Protection. In: IFIP, Springer, pp 343–358

34. Jasser S (2020) Enforcing Architectural Security
Decisions. In: ICSA, IEEE, pp 35–45

35. Jung R, Heinrich R, Taspolatoglu E, Pöppke
T (2020) CoCoME. URL https://github.com/
cocome-community-case-study

36. Jürjens J (2005) Secure Systems Development with
UML. Springer

37. Katkalov K, Stenzel K, Borek M, Reif W (2013)
Model-driven Development of Information Flow-
secure Systems with IFlow. In: SocialCom, IEEE,
pp 51–56

38. Klieber W, Flynn L, Bhosale A, Jia L, Bauer L
(2014) Android Taint Flow Analysis for App Sets.
In: SOAP, pp 1–6

39. Knodel J, Popescu D (2007) A Comparison of
Static Architecture Compliance Checking Ap-
proaches. In: WICSA, pp 12–12

25

40. König H, Diskin Z (2017) Efficient Consistency
Checking of Interrelated Models. In: ECMFA, pp
161–178

41. Levenshtein VI (1966) Binary Codes Capable of
Correcting Deletions, Insertions, and Reversals. So-
viet Physics Doklady 10(8):707–710

42. Li L, Bissyandé TF, Papadakis M, Rasthofer S,
Bartel A, Octeau D, Klein J, Traon L (2017) Static
Analysis of Android Apps: A Systematic Literature
Review. IST 88:67–95

43. Lund MS, Solhaug B, Stølen K (2011) Model-driven
Risk Analysis: The Coras Approach. Springer

44. Macher G, Armengaud E, Brenner E, Kreiner C
(2016) A Review of Threat Analysis and Risk As-
sessment Methods in the Automotive Context. In:
SAFECOMP, pp 130–141

45. Meneely A, Smith B, Williams L (2020) iTrust
Electronic Health Care System Case Study. URL
https://github.com/ncsu-csc326/iTrust

46. Muntean P, Rabbi A, Ibing A, Eckert C (2015) Au-
tomated Detection of Information Flow Vulnerabil-
ities in UML State Charts and C Code. In: QRS-C,
IEEE, pp 128–137

47. MyBatis (2020) JPetStore. URL http://www.
mybatis.org/jpetstore-6/

48. Paige RF, Brooke PJ, Ostroff JS (2007)
Metamodel-based Model Conformance and Multi-
view Consistency Checking. TOSEM 16(3):11

49. Parnas DL (2001) Software Aging. In: Software
Fundamentals, Addison-Wesley Longman Publish-
ing Co., Inc., pp 551–567

50. Peldszus S, Kulcsár G, Lochau M (2015) A Solution
to the Java Refactoring Case Study using eMoflon.
In: TTC, pp 118–122

51. Peldszus S, Kulcsár G, Lochau M, Schulze S (2015)
Incremental Co-Evolution of Java Programs based
on Bidirectional Graph Transformation. In: PPPJ,
pp 138–151

52. Peldszus S, Kulcsár G, Lochau M, Schulze S (2016)
Continuous Detection of Design Flaws in Evolv-
ing Object-Oriented Programs using Incremental
Multi-pattern Matching. In: ASE

53. Peldszus S, Strüber D, Jürjens J (2018) Model-
Based Security Analysis of Feature-Oriented Soft-
ware Product Lines. In: GPCE

54. Peldszus S, Tuma K, Strüber D, Jürjens J, Scan-
dariato R (2019) Secure Data-flow Compliance
Checks between Models and Code Based on Au-
tomated Mappings. In: MODELS, IEEE, pp 23–33

55. Peldszus S, Tuma K, Strüber D, Scandariato R,
Jürjens J (2020) Implementation and Evaluation
Data. URL https://github.com/SvenPeldszus/
GRaViTY-SecDFD-Mapping

56. Peldszus S, et al. (2020) GRaViTY ProgramModel.
URL http://gravity-tool.org

57. Perl::DOC (2020) Perl Language Reference. URL
https://perldoc.perl.org/index-language.
html

58. Ramadan Q, Salnitri M, Strüber D, Jürjens J,
Giorgini P (2017) From Secure Business Process
Modeling to Design-Level Security Verification. In:
MODELS, pp 123–133

59. Rasthofer S, Arzt S, Bodden E (2014) A Machine-
learning Approach for Classifying and Categorizing
Android Sources and Sinks. In: NDSS Symposium

60. Reder A, Egyed A (2012) Incremental Consistency
Checking for Complex Design Rules and Larger
Model Changes. In: MODELS, pp 202–218

61. Ruland S, Kulcsár G, Leblebici E, Peldszus S,
Lochau M (2018) Controlling the Attack Surface of
Object-Oriented Refactorings. In: FASE, pp 38–55

62. Sabelfeld A, Myers AC (2003) Language-based
Information-flow Security. JSAC 21(1):5–19

63. Saini V, Duan Q, Paruchuri V (2008) Threat Mod-
eling Using Attack Trees. CCSC 23(4):124–131

64. Santos JCS, Tarrit K, Mirakhorli M (2017) A
Catalog of Security Architecture Weaknesses. In:
Proceedings of the International Conference on
Software Architecture Workshops (ICSAW), IEEE
Computer Society, pp 220–223, DOI 10.1109/
ICSAW.2017.25

65. Scandariato R, Wuyts K, Joosen W (2015) A De-
scriptive Study of Microsoft’s Threat Modeling
Technique. RE 20(2):163–180

66. Shostack A (2014) Threat Modeling: Designing for
Security. John Wiley & Sons

67. Sion L, Yskout K, Van Landuyt D, JoosenW (2018)
Solution-aware Data Flow Diagrams for Security
Threat Modeling. In: SAC, pp 1425–1432

68. Sultan K, En-Nouaary A, Hamou-Lhadj A (2008)
Catalog of Metrics for Assessing Security Risks
of Software Throughout the Software Development
Life Cycle. In: ISA, pp 461–465

69. Tuma K, Scandariato R (2018) Two Architectural
Threat Analysis Techniques Compared. In: ECSA,
pp 347–363

70. Tuma K, Calikli G, Scandariato R (2018) Threat
Analysis of Software Systems: A Systematic Liter-
ature Review. JSS 144:275–294

71. Tuma K, Balliu M, Scandariato R (2019) Flaws
in Flows: Unveiling Design Flaws via Information
Flow Analysis. In: ICSA, pp 191–200

72. Vallee-Rai R, Hendren LJ (1998) Jimple: Simpli-
fying Java Bytecode for Analyses and Transforma-
tions. Tech. rep., McGill University

26

73. Vanciu R, Abi-Antoun M (2013) Finding Architec-
tural Flaws using Constraints. In: ASE, IEEE, pp
334–344

74. Wolf T, Dahyabhai N, Sohn M, et al. (2019) EGit
– User Guide. URL https://wiki.eclipse.org/

EGit/User_Guide

27

