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ABSTRACT

Security by design is a key principle for realizing secure software

systems and it is advised to hunt for security flaws from the very

early stages of development. At design-time, security analysis is

often performed manually by means of either threat modeling or

expert-based design inspections. However, when leveraging the

wide range of established knowledge bases on security design flaws

(e.g., CWE, CAWE), these manual assessments become too time con-

suming, error-prone, and infeasible in the context of contemporary

development practices with frequent iterations. This paper focuses

on design inspection and explores the potential for automating the

application of inspection rules to speed up the security analysis.

The contributions of this paper are: (i) the creation of a publicly

available data set consisting of 26 design models annotated with

security flaws, (ii) an automated approach for following inspection

guidelines using model query patterns, and (iii) an empirical com-

parison of the results from this automated approach with those

from manual inspection. Even though our results show that a com-

plete automation of the security design flaw detection is hard to

achieve, we find that some flaws (e.g., insecure data exposure) are

more amenable to automation. Compared to manual analysis tech-

niques, our results are encouraging and suggest that the automated

technique could guide security analysts towards a more complete

inspection of the software design, especially for large models.
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1 INTRODUCTION

In the current software development culture, agility and speed are

paramount. However, software quality in general, and security in

particular, cannot be sacrificed in lieu of a faster pace of devel-

opment. This is where the łshift leftž concept comes into place.

Namely, software validation and verification should be applied as

early as possible in each agile iteration, including the analysis of

the design. Indeed, recent work has highlighted that a large share

of vulnerabilities disclosed in industrial control systems had their

root cause in the design [15].

At design level, mainstream analysis and validation techniques,

like threat analysis and design inspections [13, 21, 28], are heavily

based on the use of experts performing manual tasks. Therefore,

they do not fit well in the agile paradigm of continuous integration

and continuous development [10]. More automation of design-level

security techniques is necessary, and the research community has

responded to this challenge [5, 7, 14, 27]. This paper continues on

this research path and explores the automation of design-level se-

curity inspection guidelines, which has not been attempted before.

In particular, we select a subset of 5 inspection guidelines from

the catalog of Tuma et al. [34] (see Section 2.1) and define a tech-

nique to perform the model inspection automatically. We

assume that a software system is modeled as a Data Flow Diagram.

This choice of this model type is justified by the fact that DFDs

are widely used in the industry for security analysis purposes. For

instance, DFDs are central to threat analysis and are, therefore,

already available in companies that have a secure software process

in place [16]. In addition, a recent case study [8] involving four

companies shows that DFDs are used for threat analysis in agile
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Table 1: Security design flaws from the catalog proposed by Tuma et al. [34] (flaws in bold are the focus of this work)

Flaw number and name Description

1 Missing authentication An absence of an authentication mechanism in the system.
2 Authentication bypass There exists an entry point with authentication mechanism that can be bypassed.
3 Relying on single factor authentication The authentication mechanisms rely on the use of passwords.
4 Insufficient session management Sessions are not managed securely throughout their life cycle.
5 Downgrade authentication Possibility to authenticate with a weaker (or obsolete) authentication mechanism.
6 Insufficient crypto key management Keys are not managed securely throughout their life cycle.
7 Missing authorization An absence of an authorization mechanism in the system.
8 Missing access control An absence of access control in the system.
9 No re-authentication An absence of re-authentication during critical operations.
10 Unmonitored execution Uncontrolled resource consumption due to interactions with external entities.
11 No context when authorizing An absence of conditional checks for access control.
12 Not revoking authorization An absence of a process for revoking user access.
13 Insecure data storage Storage of sensitive data is in clear or access control mechanisms are weak.
14 Insufficient credentials management Credentials are not managed securely throughout their life cycle.
15 Insecure data exposure Sensitive data is transported in clear.
16 Use of custom/weak encryption Generating small keys, using obsolete encryption schemes.
17 Not validating input/data Absence of validation checks when receiving data from external entities.
18 Insufficient auditing Access to critical resources or operations is not logged.
19 Uncontrolled resource consumption Uncontrolled resource consumption of internal components.

organizations. We use an enriched version of DFDs, which are an-

notated with additional security information (see Section 2.2). As

shown in the right-hand side of Figure 1, in Section 4 we describe

how the inspection guidelines have been (i) represented as model

query patterns by means of VIATRA and (ii) implemented in a pro-

totype tool as an Eclipse plugin. A match of a model query pattern

executed by the tool would correspond to the presence of a security

design flaw in the analyzed DFD.

To evaluate our technique, we need a ground truth, i.e., design

models (DFDs) that are labeled with information concerning the

security design flaws that are present in each model. Such a data

set did not exist and, in general, the lack of validation data has

been a recurring challenge in our field of research. As shown in left-

hand side Figure 1, in Section 3 we describe how we have created a

curated data set of 26 security-oriented DFDs by enrolling 13

modelers who have worked on 4 different software systems, under

controlled conditions andwith the prescriptions of empirical studies.

Additionally, we have employed 2 security experts (co-authors of

this paper) to assess the models. The experts have manually applied

the 5 inspection guidelines under investigation in this work and

have identified the design flaws in all models. The assessment

has been performed in an unbiased way, i.e., without any prior

knowledge of how the automated technique works. Further, the

experts have worked independently and have checked each other’s

work to a large extent, which provides assurance about the quality

of the resulting data set. The data set is now publicly available to

the research community and has been used in Section 5 in order to

validate the automated technique we propose.

Our results (discussed in Section 6) show that three inspection

guidelines have the promising potential of being amenable to au-

tomation. Clearly, these results are valid within the confines of the

threats to validity presented in Section 7.

2 BACKGROUND

This section provides some background on design flaws, the cat-

alog of inspection guidelines, the Data Flow Diagram (DFD) [12]

representation, and its security extensions.

2.1 Design Flaws and Inspection Guidelines

We refer to a security design flaw as a weakness in the high-level

design of a system (e.g., software architecture), which exposes the

system to security threats. Flaws may lead to code defects [11]. This

paper relies on a catalog of security design flaws proposed by Tuma

et al. [34]. As shown in Table 1, the catalog consists of 19 common

security design flaws concerning authentication, access control, au-

thorization, availability of resources, integrity, and confidentiality

of data. It was compiled by means of a systematic analysis of exist-

ing vulnerability database entries from several sources (CVE [1],

CWE [2], OWASP [23], and SANS [24]). This study focuses on five

security design flaws in particular, marked in bold in Table 1.

As shown by the example in Listing 1, each design flaw spec-

ifies an inspection guideline. The guidelines were developed for

manually determining the presence of this security design flaw

in a software architecture. Each guideline leads the analyst to the

identification of certain locations in the model where the flaw could

be present. At those locations, the analyst has to evaluate some

criteria (rules) in the form of yes/no questions. A ‘no’ answer means

that a flaw is present. To help the analyst, the criteria sometimes

refer to certain security solutions. But, they do not account for

all existing security solutions protecting a data property. For in-

stance, the criterion ‘Is there any form of time-stamping, message

sequencing or checksum in the exchanged packages?’ does not

require cryptographic hashing (as opposed to a simple checksum)

to be satisfied. In addition, TLS provides message authentication in

addition to encryption. Manually exploring design models in such

a way is effort intensive and prone to errors. Therefore, automating

this assessment activity is desirable, especially in the context of

frequent design iterations where redoing such an assessment is

prohibitively expensive.

2.2 Data Flow Diagram and Security Extensions

In this work, we automate the inspection of DFDs, which are already

extensively used in security threat modeling [17, 28, 33]. The DFD

notation is used to graphically represent a system architecture. It

highlights the flows of data, showing how the information enters,
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Security Design Flaw 15: Insecure Data Exposure
Flaw description Data is not transferred in a secure way. For example a

web application uses the HTTP instead of HTTPS. This leaves the
channel vulnerable to eavesdropping, Man In The Middle (MITM)
attacks etc.

Inspection guideline to detect this flaw
• Locate the valuable information in the model.
• Track them through the architecture to determine where and how

they are transferred.
• At each step examine the following:

ś Is the reuse of packets prevented (Replay attacks)?
ś Is there any form of time-stamping, message sequencing or

checksum in the exchanged packages?
ś Is the data transferred over an encrypted channel (SSL/TLS)?

Listing 1: Inspection guideline for flaw 15 [34]

traverses, and leaves the system. Figure 2 depicts a high-level DFD

for a social network application. The diagram shows how private

users and ad companies (both external entities) interact with the

system, which is modeled as a set of processes for authentication

(Authenticate), core business logic (Service Provider) and access to

the persistence layer (DB access provider). Data is persisted in two

data stores: key material is in the Key Storage, while user data is in

the Social Network Database.

The regular DFD notation is limited in denoting security-related

information, making it hard for practitioners to reason about se-

curity at design time [7]. To this aim, the DFD notation has been

extended in the literature with security properties [32] and security

solutions [30]. As shown in Figure 2, the modeler can specify the

type of information that is passed around (e.g., sensitive, encrypted

data or key material). Furthermore, the modeler can represent the

use of security mechanisms: (i) secure pipes (optionally with client

authentication) to protect the confidentiality and integrity of data

transmitted over data flows, (ii) encrypting data in a data store,

(iii) key management solutions (creation, replacement, and destruc-

tion), (iv) secure log of access to data stores, and (v) authentication.

3 A CURATED DATA SET OF DESIGN MODELS
AND THEIR SECURITY FLAWS

The research field of secure design is plagued by the lack of publicly

available ‘case studies’ that could be used to validate new techniques.

In order to overcome this shortcoming, we have set up a series of

workshops where we asked 13 participants to model a variety of

systems using a DFD-like notation in a design tool. The resulting

models have been analyzed for security flaws by 2 expert assessors.

The workshops have been carried out with scientific rigor in the

form of an empirical study (i.e., under controlled conditions) in

order to guarantee the quality of the outcome. The outcome of this

study is two-fold: (i) the creation of a data set of 26 DFD design

models enriched with security solutions and data types, and (ii) for

each model, a report of the existing design flaws (for 5 flaws, shown

in bold in Table 1) and their locations. All the material is publicly

available on this paper’s companion website [3].

3.1 Study Design

Participants and training. The volunteering participants of this

study are 13 academic researchers. All participants finished a higher-

level degree in the field of computer science and software engineer-

ing and are employed at two universities in two different countries.

About half of participants (8/13, herein Group A) have a strong

background in software design, requirements engineering and mod-

eling. Yet, they are less experienced in software security. The other

half (5/13, hereinGroup B) have a deeper understanding of security-

related topics, including secure software design and formal methods

for security. All the participants received a training session of 1

hour. This training session included an introduction to the DFD

modeling notation, the extensions to the DFD notation used in this

work, a brush-up on concepts related to software security, and a

demonstration of the design tool they will use. The same training

material has been used at both universities.

Modeled systems. We prepared a brief description (about one page)

for 4 different systems. Each description included an explanation

of the system functionality and a list of security requirements.

DriveSafe A smartphone application for achieving safety on

the roads collaboratively by continuously updating nearby drivers

on current road safety conditions.

BeSocial A proximity-based collaborative messaging smart-

phone application to support creating and maintaining virtual chat

rooms for nearby users.

PhotoFriends A media sharing smartphone application to

enable users to share photos and build a network of friends.

SmartTex A collaborative document management web service

targeting members of the scientific community to support creating,

editing, and compiling LaTeX documents in a collaborative way.

Model creation. In a randomized assignment, each participant was

given the task to model two of the four systems, by using the DFD

notation and its security extension. Individual participants met with

the experimenters for a modeling session of about 3 hours. Each

participant received a handout package including (i) printed train-

ing slides, (ii) a cheat-sheet for the model notation, (iii) a computer

with the design tool, and (iv) the descriptions of the systems they

had to model. The descriptions are designed in such a way that

they can be easily understood in a limited amount of time. Further,

the experimenters were available to answer any questions.

Before they started with the task, the participants carried out a

shortwarm-upmodeling exercise (15 min) to get familiar with the

tool. Next, they were given the documentation of their first system.

Participants were tasked to read the documentation carefully, and

use the tool to create a DFD enhanced with security solutions

and data types. To enhance the DFD with security solutions, they

instantiated solutions from a provided catalog and bound them to

concrete DFD elements. Similarly, they labeled data flows with data

types according to a provided data type catalog.

During the modeling session the experimenters took notes and

monitored their progress. Finally, the participants were asked to

shortly explain their model. After finishing the first model, they

received the documentation for the second and repeated the task.

As a result of the modeling sessions, we obtained 26 models [3].

Each DFD model is annotated with labels (e.g., sensitive data) for
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Figure 2: A Data Flow Diagram (DFD) of a social network application (with security extensions)

information assets on the data flows. Also, the models contain

elements representing certain security solutions, like encryption

on data flows, authentication of external entities, and so on.

Manual model inspection. Two experts manually scrutinized the

created models to identify five types of design flaws (in bold in

Table 1) by applying the inspection guidelines described in Section 2.

As a form of calibration, the assessors independently inspected four

randomly selected models (covering the four different systems) and

then they compared their results in a joint session.

The discussion of the disagreements resulted in the explicit for-

mulation of common criteria for the subsequent inspections:

• If the participant made any mistakes in the use of notation

or logical mistakes (that is, in case of minor mistakes), the

experts agreed to take their intention into account.

• If two inspection rules (for different design flaws guidelines)

triggered a violation in the same model location, the experts

agreed to report only one flaw for this location (the first time

it was found). This is related to the fact that some inspection

guidelines overlap, as discussed later in the paper.

• They agreed to only consider assets that are mentioned in the

security requirements contained in each system description,

despite possible deviations in the created models.

• They agreed to assess each model in its entirety, including any

additional logic not required according to the documentation.

After the joint session, the experts independently inspected an

equal share of the remaining models, which have been assigned

randomly to the assessors (by blocking on the four systems). On

average, the experts spent about 30 minutes to manually inspect

a single model. In the end, they marked a total of five models as

requiring further discussion. These models were handed over to the

other assessor for a second inspection. The analysis reports were

then compared, and any disagreements resolved.

3.2 The Resulting Data Set

The curated data set that emerged from this study can be found

online [3]. The data set includes 26 security enriched DFDs, accom-

panied by expert reports of the flaws identified according to the

inspection guidelines. In particular, the flaws are localized on the

model and associated to a type (see Table 1).

Statistics about the models. Figure 3 depicts the average number of

elements used in the models of each system. On average, a model
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Figure 3: Overview of the model sizes per system

in our data set consists of 17.1 data flow elements, 4.9 processes,

2.7 data stores, 1.5 external entities, and 7.6 security solutions.

With respect to element type, the models are fairly uniform across

systems. Similar distributions of DFD element types have been

observed in the related work [26]. Overall, DriveSafe models are

smaller compared to the rest, in particular with respect to the data

flows. This is explained by the fact thatDriveSafe has a very simple

and unidirectional interaction model from the users’ perspective.

We also investigate the differences in the created models across

participant groups (i.e., the two campuses). The two groups created

models of comparable size. Yet, the number of modeled data flow

elements varies more within Group B (from 10 to 20). This may

indicate that participants of Group Awere in fact more experienced

in software design modeling and created more homogeneous DFDs.

Statistics about the violations. On average 15.6 flaws are found on

a single model. First, we investigated the flaws reported by the

assessors to make sure that their analysis was comparable. Overall,

the assessors found a similar number of design flaws of each type.

Second, we investigated the flaws for each of the four systems.

Slight differences can be observed across the four systems. On av-

erage, the DriveSafe models contain the smallest number of flaws
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Figure 4: The number of flaws per participant group

(average per model: DriveSafe: 12.5, SmartTex: 15, BeSocial: 17,

PhotoFriends: 18.1). As expected, the average number of flaws

seems to correlate with the model size. Systems with larger models

(BeSocial and PhotoFriends) contain on average more flaws.

Figure 4 shows the number of security flaws in models created

by Group A, Group B, and both groups together. Notably, the total

number of insufficient auditing flaws (Flaw 18), regardless of the

group, is much smaller compared to the other flaws. A possible

explanation is that, in contrast to the other flaws, every instance of

this flaw is only associated to a data store element, of which there

are typically just a few in each model (see Figure 3). The number

of flaws of type 13, 15, and 18 does not differ significantly across

groups. This suggests that despite a lesser security background,

Group A created similarly (in)secure models with respect to these

design flaws. Yet, differences can be observed for what concerns flaw

6 (crypto key management). Often, the less security-oriented group

(Group A) did not model key management explicitly, hence making

this inspection guideline not applicable. After themodeling sessions,

Group A participants explained that they did not feel confident

in their security knowledge to model cryptographic details. Also,

only a few flaws of type 2 were identified on models created by

Group B (average per group: Group A: 2.8, Group B: 1). Possibly,

correctly modeling authentication requires a deeper understanding

of security mechanisms.

4 AUTOMATED DETECTION OF FLAWS

This section describes the design and implementation of the auto-

mated design flaw detection. First, the required model extensions

for the automated detection are presented. Next, we describe how

these extensions are leveraged in the security design flaw detection.

Finally, the model query patterns are discussed.

4.1 DFD Model Extension

The detection of security design flaws relies on the representation

of two key concepts in the DFDmodels: (i) security solutions, which

define existing countermeasures, and (ii) data types, which specify

what type of information is being processed (especially whether it

is sensitive or encrypted data).

Security solutions. The design flaw detection leverages information

about existing security solutions in the model. More concretely,

checking for the presence of a design flaw can incorporate the fol-

lowing knowledge: (i) the presence of security solutions at correct
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DFDElement
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Figure 5: The Data Type Meta-Model

locations in the model (e.g., the presence of authentication mech-

anism at the entry points), (ii) the correct instantiation of these

solutions, and (iii) the appropriateness of the protection provided

by the solution with respect to the involved sensitive data. The ex-

isting representation of Sion et al. [30] is used to model the security

solutions and capture their effects.

Data types. Data types are an essential concept in security design

flaw descriptions [29] and are thus required in the models to sup-

port their detection. A concrete DFD is extended with a data model,

which is a catalog of all data types that are used in the DFD. All ele-

ments in the model (i.e., processes, data flows, data stores, external

entities) are linked to the relevant data types in the catalog to track

how data moves across the system. Furthermore, the data model

allows one to express the relationship between an encrypted piece

of data and the original data, including the key (data type) used for

encryption and decryption. This way, we capture the notion that

‘encrypted’ data is a transformation of the original (sensitive) data,

such that we can still track where sensitive data is sent or stored

after it has been encrypted. Figure 5 shows the meta-model we

created for this study to represent these data types. The encrypted

version of data is represented as a TransformedData instance.

4.2 Leveraging the Extensions for Detection
Table 2 illustrates how the DFD model extensions are used for flaw

detection. The top part of this table shows the relationship between

security solutions, threat types, and flaws. Rather than hard-coding

the set of solutions that can impact the detection of a flaw, the

detection criteria of flaws 2, 13 and 15 are expressed using a threat

type (e.g., ‘information disclosure’). The solutions are associated to

the threat types that they prevent. Note that the actual relationship

that is implemented in the detection logic is more involved, because

it also needs to be verified that an instantiated solution prevents

the threat at the correct model location to avoid a flaw. For the key

management and logging solutions, the detection logic (for flaws 6

and 18) directly checks for their presence.

The bottom part of Table 2 shows the data types used in this

study, and the corresponding flaws that rely on these data types in

their detection logic.
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Table 2: The use of DFDmodel extensions for flaw detection

Extension Name Affected Threat Types Flaws

Secure pipe Information disclosure, Tampering,
Spoofing

2, 15

Secure pipewith client
authentication

Information disclosure, Tampering,
Spoofing

2, 15

Authentication Spoofing 2
Encrypted storage Information disclosure 13
Key creation Ð 6
Key replacement Ð 6
Key destruction Ð 6
Secure logging Repudiation 18

Sensitive data Ð 2, 13, 15, 18
Encrypted data Information disclosure 2, 6, 13, 15
Crypto key data Ð 2, 6, 13, 15
Session data Ð 2

4.3 Detecting Flaws

The security design flaws in focus (see Table 1) were translated to a

set of criteria to enable their detection. Below, we describe how the

query patterns detect instances of these flaws in concrete models.

Authentication bypass (Flaw 2) This flaw is detected by first

filtering for data flows from an external entity to a process which

transfer sensitive data. For each of these data flows the flaw triggers

if: (i) the data is sent without protection against information dis-

closure; or (ii) there is no protection against spoofing the external

entity. Further, in the case of session data type, the flaw also triggers

when there is no protection against tampering.

Insufficient crypto key management (Flaw 6) This flaw is

detected by filtering for DFD elements handling a data of type

key. The flaw triggers if: (i) the key is insecurely distributed (i.e.,

there is no protection on the flow against information disclosure,

tampering, and spoofing on data flows or processes), (ii) the key is

stored insecurely (i.e., there is no protection against information

disclosure and tampering on data stores), (iii) a solution for key

creation is missing, (iv) a solution for key replacement is missing,

or (v) a solution for key destruction is missing.

Insecure data storage (Flaw 13) This flaw is detected by fil-

tering for data stores containing sensitive data and triggers if: (i) the

sensitive data is not encrypted (i.e., is not stored as an ‘encrypted’

TransformedData), or (ii) there is no solution to protect against

information disclosure.

Insecure data exposure (Flaw 15) This flaw is detected by fil-

tering for data flows transferring sensitive data and triggers if:

(i) the sensitive data is not encrypted, or (ii) there is no solution to

protect against information disclosure.

Insufficient auditing (Flaw 18) This flaw is detecting by fil-

tering for data stores containing sensitive data and triggers if there

is no solution to provide secure logging of access to this data store.

To avoid biasing the results of this work, the development of

the query patterns was carefully isolated from the model creation

step, and the manual model inspection (see Section 3). First, the

implemented query patterns were tested against a separate example

system (not part of the data set). Second, implementing and testing

the query patterns was completed before the start of participant

training. Finally, the experts that performed the manual inspection

were not aware of how the automated detection was implemented.

// Pattern for Security Design Flaw 15

pattern insecureDataExposure(df : DataFlow ){

// only data flows with sensitive data

DataFlow.data(df,data);

find sensitiveDataType(data);

// if sensitive info is not encrypted

neg find dataEncrypted(data);

// and there is no appropriate solution

neg find flowMitigationAgainstInfoDiscl(df);

}

// Helper pattern to find sensitive data

private pattern sensitiveDataType(dataType : DataType) {

// data type itself is sensitive

DataType(dataType );

DataType.sensitive(dataType ,true);

} or {

// data type is transformation of sensitive data

TransformedData(dataType );

TransformedData.data(dataType , data);

find sensitiveDataType(data);

}

Listing 2: Insecure data exposure query pattern in VIATRA

4.4 Implementation

This section briefly describes the implementation of the tool pro-

vided to the participants, and the detection of security design flaws.

To provide the participants with a tool environment to create the

models, we have developed a modeling tool based on the Eclipse

platform. The tool uses Ecore1 to express the meta-model of DFDs,

security solutions, and the data types (as discussed earlier). Further-

more, a graphical modeling editor was developed using Sirius.2 To

detect the security design flaws, the above criteria are implemented

with VIATRA model query patterns3 (see, for example, Listing 2 for

the pattern for flaw 15). Every security design flaw is specified as a

pattern. These patterns are typed with the meta-model elements

and declaratively list the criteria for triggering the flaw. To specify

more complex situations, the presence or absence of other helper

patterns can be used. For example, Listing 2 shows how the detec-

tion of insecure data exposure can only match if there is sensitive

data involved, which can be a data type with the ‘sensitive’ flag

set to true, or a TransformedData of sensitive data (determined re-

cursively). The automated detection in concrete user models uses

the VIATRA query engine to automatically query the model and

provide a list of all the discovered matches in the model, which are

exported for subsequent analyses.

5 PERFORMANCE OF THE AUTOMATED
INSPECTION TECHNIQUE

We have analyzed the 26 models described in Section 3 with the

automated inspection tool described in Section 4.

5.1 Research Questions

We measure the performance of the query patterns in terms of

precision and recall with respect to the ground truth, i.e., the in-

spection performed by expert assessors. Accordingly, we pose two

research questions.

1https://www.eclipse.org/ecore
2https://www.eclipse.org/sirius
3https://www.eclipse.org/viatra
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RQ1. What is the precision of the automated inspection guidelines

(implemented as query patterns) for the detection of five security

design flaws?

We measure true positives (𝑇𝑃𝑠) and false positives (𝐹𝑃𝑠) to cal-

culate the precision 𝑃 =
𝑇𝑃

𝑇𝑃+𝐹𝑃 . A true positive is a flaw (guideline

violation) which is detected by the tool and that matches an actual

flaw reported by experts (i.e., part of the ground truth). A detected

flaw matches an actual flaw when they have the same type (design

flaw ID) and are attached to the same location in the diagram (model

element ID). Otherwise, the flaw is considered a false positive.

A high precision would mean that the automated detection pro-

duces a low number of false alarms, which makes the technique

meaningful in the context of design-level security analysis by fo-

cusing the attention of the analyst. As a term of comparison, the

precision of manual design analysis techniques is known to be high

(e.g., 0.81 in [26]).

RQ2. What is the recall of the automated inspection guidelines

(implemented as query patterns) for the detection of five security

design flaws?

To calculate the recall 𝑅, we measure false negatives (𝐹𝑁𝑠), and

calculate 𝑅 =
𝑇𝑃

𝑇𝑃+𝐹𝑁 . A false negative is an actual flaw (i.e., part of

the ground truth) which is not detected by the tool.

A high recall would mean that the automated detection is able to

findmost actual flaws that are present in the model, providing assur-

ance to the analyst regarding its completeness. However, we remind

that the recall of manual design analysis techniques is known to be

low (e.g., 0.36 in [26] and around 0.50 in other studies [35]).

5.2 Results

Table 3 presents a summary of the performance results. As shown

in the last row, the overall average precision of the automated tech-

nique is P=0.53 and the recall is R=0.76. As shown in Table 4 these

results are consistent across the four analyzed systems, i.e., there

are only small variations in how the technique performs in different

systems. The results for about half of the models (15/26) were in-

spected by the first author against the ground truth to determine if

the 𝐹𝑃𝑠 of the tool were in fact overlooked flaws by experts. Though

we did not find many overlooked flaws in the ground truth, a more

systematic quality evaluation would be beneficial for the data set.

The first take home message is that, not surprisingly, it is very

hard to attain good performance (precision and recall) when

automating the inspection rules. Compared to manual threat

analysis techniques (e.g., STRIDE), the precision of our automa-

tion is too low to replace expert analysis. However, the higher

value of recall is somewhat encouraging, as the automated tech-

nique could be used to present an expert with a list of potential

issues to sieve through.

The second take home message is that some rules seem to be

more promising than others as being amenable to automation.

Indeed, the precision and recall differ significantly across the

query patterns implementing the 5 inspection guidelines, as

shown in Table 3.

In the rest of this section we analyze the reasons for false posi-

tives and false negatives in the detection of each design flaw. We

start from the query patterns with a lower precision and recall (i.e.,

flaws 18 and 2Ðin order of increasing performance) and continue

Table 3: Precision (P) and recall (R) of the query patterns

Security Design Flaws TP FP FN P R

Flaw 2: Authentication bypass 28 58 29 0.33 0.49
Flaw 6: Insufficient key management 56 36 4 0.61 0.93
Flaw 13: Insecure data storage 76 16 31 0.83 0.71
Flaw 15: Insecure data exposure 166 162 24 0.51 0.87
Flaw 18: Insufficient auditing 8 28 17 0.22 0.32

Total 334 300 105 0.53 0.76

Table 4: Overall precision and recall across systems

System TP FP FN P R

BeSocial 95 88 24 0.52 0.80
DriveSafe 67 59 21 0.53 0.76
PhotoFriends 95 70 32 0.58 0.75
SmartTex 77 83 28 0.48 0.73

with the query patterns with a slightly better precision and recall

(i.e., flaws 15, 16, and 13Ðin order of increasing performance).

Insufficient auditing (Flaw 18) achieved the worse precision

(0.22) and recall (0.32). The inspection guidelines for this flaw dic-

tate an analysis of logging mechanisms for critical resources and

operations. One possible explanation for the high number of 𝐹𝑃𝑠

(28 compared to 8𝑇𝑃𝑠) is that the participants chose to model assets

as sensitive, even when they were not (e.g., łlist of user followersž

is public in the context of a social network application, but was

sometimes labeled as sensitive.). A correct data model is crucial

for automated detection since most inspection guidelines suggest

focusing on security critical information in the model. Given an

incorrect data model, the query pattern was looking for flaws in

the wrong locations, producing 𝐹𝑃𝑠 . During the manual inspection

of the results vis-a-vis the ground truth (on 15/26 models), we have

marked such 𝐹𝑃𝑠 to determine their weight. For this flaw, 4 out of

17 𝐹𝑃𝑠 were due to mislabeled assets. Therefore, aligning the sensi-

tivity of the modeled assets to the expert analysis would already

increase the precision of detecting this flaw.

Authentication bypass (Flaw 2) requires inspecting the entry

points of the system to determine if authentication is modeled cor-

rectly between the external entities and the processes of the system.

In total, there are 57 actual flaws (𝑇𝑃𝑠 + 𝐹𝑁𝑠) of this type. Yet, the

query pattern detects 86 flaws (𝑇𝑃𝑠 + 𝐹𝑃𝑠). Out of those, many are

𝐹𝑃𝑠 (58), and only 28 are 𝑇𝑃𝑠 . We provide two possible explana-

tions. First, the experts took modelers’ intention into account while

inspecting the models. If the participants modeled authentication

incorrectly, minor mistakes were intentionally overlooked, and the

flaw was not reported. The query pattern does not perform any

quality check of the diagram, which yields 𝐹𝑃𝑠 . Second, compared

to the query patterns, experts often reported this flaw on different

DFD elements. Given that the DFDmodel is a kind of directed graph,

our model distinguishes incoming (element is consuming the data)

to outgoing data flows (element is sending data). The query patterns

report this flaw on the outgoing data flows (i.e., for the data being

sent from the external entity), whereas the experts reported this

flaw on the incoming data flow (i.e., for the data being consumed

by the external entity). This yields both 𝐹𝑁𝑠 and 𝐹𝑃𝑠 .
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Insecure data exposure (Flaw 15) achieved a high recall (0.87)

but performed worse in terms of precision (0.51). Similar to flaw 18,

a possible explanation for the high number of 𝐹𝑃𝑠 (162 compared

to 166 𝑇𝑃𝑠 and 24 𝐹𝑁𝑠) is an incorrect data model. Here, the assets

are traced, and the flaws are reported for each model element, from

asset source to asset sink. Thus, incorrectly labeled assets may have

a larger impact on the precision and recall of the query pattern for

detecting design flaw 15. The relatively small number of 𝐹𝑁𝑠 (24)

shows that, at least, violations were not overlooked by this query

pattern. This also suggests that the participants over-approximated

(rather than under-approximated) the sensitivity of assets.

Insufficient key management (Flaw 6) achieved the high-

est recall (0.93) but performed worse in terms of precision (0.61).

The inspection guidelines for insufficient key management sug-

gest identifying cryptographic keys in the model, and analyzing

their distribution, storage, creation, replacement, and destruction.

The extensions to the DFD notation enable modeling key creation,

replacement, and destruction. These security solutions are linked

to the assets (of type ‘key’) and are checked for presence by the

execution of the query pattern. For key distribution and storage, the

query pattern leverages helper queries implemented for detecting

design flaws 15 and 13, respectively. Therefore, the observed 𝐹𝑃𝑠

occur for similar reasons to the ones discussed in those flaws.

Insecure data storage (Flaw 13) achieved a fairly acceptable

recall (0.71), and a relatively good precision (0.83). We investigated

the reason for a sub-optimal number of 𝐹𝑁𝑠 . One possible expla-

nation is that the inspection rules for security design flaws 13 and

18 overlap. For instance, consider the inspection rule łIs access to

data logged?ž (from Flaw 13) and łIs access to sensitive data and

operations logged?ž (from Flaw 18). A systematic application of the

inspection rules therefore results in reporting the same violation

twice (once for Flaw 13 and once for Flaw 18). During model in-

spection, experts agreed to report such a flaw only once (the first

one they found, which was usually while inspecting for Flaw 13).

Instead, missing logs of access trigger the query pattern detecting

Flaw 18 (and not Flaw 13). This yields 𝐹𝑃𝑠 for the pattern detecting

Flaw 18, and 𝐹𝑁𝑠 for the pattern detecting Flaw 13.

6 DISCUSSION

This section discusses the construction of the data set, and the

challenges specific to automating design flaw inspection.

6.1 Creation of the Data Set

During the creation of the data set we have taken additional steps

to ensure that the expert assessors calibrated their inspection to

achieve repeatable results. Even so, 33% of the reported flaws (over

5 problematic models) were not agreed upon and had to be revisited.

The experts had to agree on a common strategy for understand-

ing different requirement interpretations and handling modeling

ambiguities. This required more calibration than anticipated.

Requirement interpretations. Early-architecture design models are

often created from incomplete system descriptions. Therefore, creat-

ing such models means dealing with unknowns and under-specified

documentation. If the participants made functional mistakes, the

experimenters intervened and warned them to revisit the system

description. A systematic assessment of functional correctness was

not carried out, as this was seldom the case. But, some security

requirements were interpreted differently by our participants. For

instance, the requirement: łIn no event, the documents of a customer

should be exposed due to a security breach. Hence, the documents have

to be stored securely,ž was often understood to require assurance

of confidentiality (of documents) for transfer and storage. Another

interpretation is that the documents must be stored in a secure stor-

age to which access is logged. In particular, Group A (less security

background) often made over-approximations when interpreting se-

curity requirements Different requirements interpretations caused

participants to extend the DFD with a different data model and, in

consequence, different security solutions. This has an effect on the

presence or absence of security design flaws. To understand the

model (in particular the rationale for extensions), the assessors had

to reconstruct the rationale for the created data model vis-a-vis the

requirements.

Modeling ambiguities. Different modelers have a variety of ways

to model the same software system with the same requirements.

As shown in Figure 3, models of the same system can vary in size

(e.g., the largest (56) and smallest (17) BeSocial model). These dif-

ferent modeling options have an effect on the presence or absence

of security design flaws. For instance, sometimes the participants

modeled interactions between the external entity and an authenti-

cation process, and between the external entity and all processes

representing system functionalities. The participants implicitly as-

sumed sequential and conditional data flows (i.e., the authentication

process is invoked first, and only upon success, can the other func-

tionalities be executed). Since the extended notation does not allow

a specification of conditional or sequential data flows, this model is

ambiguous, and the authentication bypass flaw could be present.

The assessors had to interpret the modeler’s intention to handle

ambiguously modeled DFDs.

To help amanual inspection, we see benefit in (i) operationalizing

the guidelines for inspection with reference to element types, and

(ii) introducing quality checks for the extended DFD notation.

6.2 Automation

In what follows we describe challenges specific to the automation

of design flaw detection and discuss how they can be overcome.

Informal notation. The query patterns were developed by translat-

ing natural language inspection rules to relations between elements

of the extended DFD notation. According to this translation, the

query patterns search for concrete diagram element combinations

that are incorrect or problematic. Such an implementation can be

broad (e.g., checking for the absence of a security solution). Still,

this cannot account for all potential modeling options as modelers

may apply shortcuts and (un)intentionally circumvent the detection

mechanism. For instance, if the model does not contain sensitive

assets, the query patterns will not find insecure data exposure flaws

on data in transit. Therefore, the security design flaw detection

inherits the problems from the DFD modeling ambiguities.

Modeler assumptions. Furthermore, anymodel-based detectionmech-

anism relies on these models to precisely reflect the modeler’s inten-

tions. It may, however, be possible (due to misinterpretations) that

the models actually represent a different situation than intended by
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the modeler. For example, modeling application-level encryption,

but specifying the resulting encrypted data as sensitive, will cause

automated assessments to consider the encrypted data not to be

protected against information disclosure.

Similarly, the modeling concept of data is very open and supports

many interpretations of which data types exactly would need to

be modeled. Given the reliance of some flaws on the sensitivity of

data as a key criterion to determine their applicability, the degree

of detail in modeling data and correctly assigning its sensitivity has

a considerable impact on the detection, as shown in the example

with the encrypted sensitive data above.

Going forward. The query patterns are executed on finished models,

aiming to achieve a fully automated design flaw detection. This

approach does not explore the potential benefits of providing mod-

eling feedback to the modeler while the model is being constructed.

Computer-aided detection could overcome some of the modeling

challenges discussed above. For instance, our approach could be

extended with an appropriate user interface to guide modelers and

alert them for potential security design flaws, continuously. Such

guidance can also assist modelers in avoiding modeling ambigui-

ties and ensure a more accurate detection of security design flaws.

Finally, our approach can be extended to implement the detection

of other security design flaws from the catalog.

7 THREATS TO VALIDITY

7.1 Internal Validity

The threats to internal validity that we have identified relate to

(i) the descriptions of the four systems, (ii) the construction of the

DFD models, (iii) the extension of the DFD models with the data

types, and (iv) the construction of the expert assessment baseline.

Descriptions of the four systems. Some of the security re-

quirements mentioned in the descriptions of the four systems might

have required the participants to use security solutions which were

not provided (as out-of-the-box extensions) or straightforward to

model. This threat also relates to the limited security expertise of

some participants. In addition, some security requirements were

open to interpretation (as discussed in Section 6).

Construction of the models. For the construction of the 26

models there are three concerns. First, the participants had a limited

familiarity with the graphical user interface of the modeling tool.

To counter this threat, all participants started with a warm-up

modeling exercise to ensure they were able to create models and

had no remaining questions. Also, at least one author was always

present to assist in case any questions or issues arose. Second, the

learning effect of working on two systems per participant was

controlled by a balanced distribution of the systems. Third and

finally, the participant might have perceived some stress in trying

to create the models in the foreseen time slots and fatigue due to

the length of the session. However, we remark that all participants

finished earlier and they could take short breaks if needed.

Extending the models with data types. Since there was no

graphical modeling support for adding the data types, participants

had to use textual labels on the data flows to specify the data types.

These descriptions later had to be included in the model to enable

the automated flaw detection patterns to take them into account.

We consider the threat of modeling errors that could have been

introduced by the authors, when creating the data model from the

textual labels. To reduce the impact of errors in the modeling, all

models have been checked by two authors.

Construction of the expert assessment. Concerning the as-

sessment of the models by the two experts, we acknowledge that

such an assessment could contain errors. For instance, the experts

had to interpret the modelers’ intentions when assessing the pres-

ence of the security design flaws. However, the probability of these

errors has been minimized by applying two separate calibration

steps between the security experts that performed the assessment.

7.2 External Validity

With respect to the generalization of the results, there are two main

threats to the external validity. First, the participants might not be

representative of industry professionals. All the participants were

researchers with modeling experience, while 5 out of 13 participants

had security expertise. Second, the results might be specific to the

systems used in this paper. To reduce the impact of this threat, we

relied on four different system descriptions which were randomly

assigned to the different participants. However, these four systems

are relatively similar in size because the participants had to be

able to create them in a limited amount of time. An evaluation on

systems with varying sizes may be useful to evaluate the impact of

the model sizes on the effectiveness of the automated detection.

8 RELATED WORK

In this section, we position our contributions in the context of the

related work on automating security design analysis. We also dis-

cuss related security design flaw catalogs and works on automating

the detection of architectural bad smells and anti-patterns.

8.1 Automation of Security Design Analysis

Recently, Seifermann et al. [27] presented an approach for automat-

ically analyzing security of data-driven architectures. To this aim,

they propose an architectural description language enriched with a

data model. They transform the architecture to an operation model,

which in turn, is automatically transformed to a logic program,

where the security analysis is executed. Similar to our data transfor-

mations, Seifermann et al. define data processing operations, which

seem to be essential for analyzing confidentiality. But, our detection

also considers existing countermeasures. Further, Seifermann et al.

demonstrate the analysis with logical rules for detecting unautho-

rized access. Instead, our work is automating the detection of flaws

related to several concerns (namely, authentication, confidentiality,

integrity, and accountability).

Almorsy et al. [5] propose an approach for automating security

analysis by means of capturing security metrics and vulnerabili-

ties as constraints over a detailed system description model. It is

beneficial for the analysis to consider system vulnerabilities and

defenses side-by-side. Similarly, our query patterns consider de-

sign flaws with respect to the security solutions. In addition, the

constraints developed by Almorsy et al. [5] rely on the modeler to

provide a model. In particular, the constraint about data tampering

seems similar to our query pattern detecting insecure data exposure

(15). Yet, the introduced constraints detect attack scenarios (e.g.,
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denial of service) and assess the system’s implemented security

(e.g., defense-in-depth), rather than security design flaws.

Berger et al. [7] develop graph query rules to check for vulnera-

bilities in extended DFDmodels and evaluate themwith case studies.

Similar to this work, these rules are based on the descriptions of

existing repositories (namely, CWE, and CAPEC). In addition, their

approach also extends the DFDmodel with asset sensitivity. Among

others, Berger et al. develop queries to check for authentication

bypass and clear text transmission of sensitive information (similar

to our query patterns for flaws 2 and 15). An important distinction

is that our DFD extended notation includes security mechanisms.

UMLsec [18, 19] is a security extension of the Unified Modeling

Language. It enables developers to express security relevant infor-

mation in system specification diagrams. Similar to our approach,

UMLsec relies on security extensions to automatically analyze de-

sign models. In contrast, our approach is focused on detecting early

security design flaws on architectural models, as opposed to evalu-

ating constraints over specification diagrams.

Katkalov et al. [20] developed a model-driven approach (IFlow)

for specifying and analyzing information flow properties on UML

models. The authors extend the UML model and transform it to

a formal model, which is used to refine the UML generated code

skeleton. The proposed approach can leverage static analysis to ver-

ify information flow properties in the implemented code skeleton,

as well as an interactive theorem prover to verify the properties

on the formal model. Similar to this work, IFlow requires the de-

veloper to provide information about the sources (of confidential

information). In contrast, IFlow is a formal approach that analyzes

the non-interference property.

Hoisl et al. [16] present an approach for modeling and enforc-

ing object flows in process-driven Service-Oriented Applications

(SOAs). The authors provide ametamodel for defining and enforcing

secure object flows in process-driven Service-Oriented Architec-

tures and develop model transformations to generate platform spe-

cific models. Similar to the data transformations in our data model,

they introduce a semantics of control nodes (i.e., fork, join, decision,

and merge) to reason about secure object flows. In addition, their

approach is used to automatically analyze the confidentiality and

integrity of data flows in a model representation. But, this work

extends the model notation with security solutions and focuses on

the detection of a variety of security design flaws.

Frydman et al. [14] propose an approach accompanied by a tool

(AutSEC) for automating threat modeling and risk assessment of

software designs. To identify threats in annotated DFDs, the au-

thors introduce identification and mitigation trees. They obtain the

DFD annotations by maintaining maps of common DFD element

labels (e.g., web server can be mapped to the łApachež label). Simi-

lar to this paper, Frydman et al. extract information about assets

and security mechanisms from the user-extended DFDs. Yet, their

diagram extensions are based on user-provided labels and map-like

data structures. In contrast, this work allows modelers to explicitly

model data properties and security solutions in DFDs.

For a more detailed account on automated design analysis tech-

niques, we refer the reader to a systematic literature review [33].

8.2 Security Design Flaw Catalogs

We briefly mention the related work on security design flaw cat-

alogs. Santos et al. [25] compiled a catalog of common security

architectural weaknesses. Similar to the catalog used in this work,

their catalog focuses on design-level security flaws. Arce et al. [6]

compiled a list of top 10 security design flaws to raise awareness

among software architects about the most common design issues

leading to security breaches. Indeed, a few inspection guidelines

of the catalog used in this study are in line with this list (e.g., ‘use

cryptography correctly’ is related to our design flaw 6). Nafees et

al. [22] propose a template for detecting architectural anti-patterns

and a catalog of 12 Vulnerability Anti-Patterns. The purpose of

their catalog is to bridge the communication gap between security

experts and software developers. We also mention the existing cor-

pora (i.e., CWE, CVE, OWASP, SANS, CAPEC) describing common

security weaknesses, vulnerabilities, and mitigations.

8.3 Architectural Bad Smells and Anti-Patterns

We briefly mention the related work on detecting architectural

bad smells and anti-patterns but remind the reader that none of

these approaches analyze the architecture with respect to security.

Bouhours et al. [9] introduce a catalog of so called ‘spoiled pat-

terns’ and automatically detect them in architecture models. To

this aim, they extend an existing OWL ontology. Their approach

suggests according model transformations to the user. Taibi and

Lenarduzzi [31] compile a catalog of 11 bad smells specific to mi-

croservice architectures by means of conducting interviews with

developers. They emphasize the importance of analyzing microser-

vices that expose private data and shared resources, which is inter-

esting from a security perspective. For a more complete account of

existing literature on design smells detection we refer the reader to

the mapping study by Alkharabsheh et al. [4].

9 CONCLUSION

This paper has presented three main contributions. First, we have

shared with the research community a data set of design models

(in a notation based on DFD), created by thirteen participants with

a varied background, that model four systems with a varied set

of security requirements, and that are annotated with identified

design flaws. These models can be used to validate existing and

future security techniques. Second, we have attempted to automate

five model inspection guidelines for security to detect secure design

flaws. These guidelines are meant to be used by security experts

and, hence, are difficult to automate, as humans are better suited

to execute tasks that involve fuzzy and/or incomplete instructions.

Third, we have performed an empirical evaluation that, compared

to the ground truth created by manual analysis, shows that automat-

ing some of the guidelines is possible with acceptable precision

and recall, albeit others are more challenging. Also, our work has

pointed out some limitations (e.g., overlaps, unclear rules) in the

inspection guidelines themselves. As part of the future work, the

results of this paper are being used to improve the quality of the

inspection guidelines. Further, we are interested in extending the

data set and particularly welcome the contribution of the wider

research community.
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