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ABSTRACT

In the past decade, speed has become an essential trait of software development (e.g., agile, contin-
uous integration, DevOps) and any inefficiency is considered unaffordable time waster. Such a fast
pace causes challenges for architectural threat analysis. Leading techniques for threat analysis, like
STRIDE, have the advantage of being systematic. However, they are not equipped to discern be-
tween important and less critical threats, while the threats are being discovered. Consequently, many
threats are discarded at a later time, when their risk value is assessed. An alternative technique, called
eSTRIDE, promises to remove these inefficiencies by focusing the analysis on the critical parts of
the architecture. Yet, no empirical evidence exists about the actual effect of trading off systematicity,
for a more focused attention on high-priority threats. This paper contributes with an empirical study
comparing these two approaches in the context of two industrial case studies. We found that the two
approaches yield the same number of security threats during a given time frame. However, partici-
pants using eSTRIDE found twice as many high-priority threats. The underlying analysis procedures
cause similarities and differences in the execution. In addition, security expertise has an effect (albeit

small) on the quality of analysis outcomes and execution.

1. Introduction

Security-by-design techniques aim to avoid security pit-
falls in software systems early on, starting from the de-
sign phase, when the major development effort is yet to
come [22, 13]. The intent is to cut the maintenance cost
induced by fixing security design flaws when it is too late.
In this context, architectural threat analysis is a common ac-
tivity performed by experts (often manually) to analyze the
high-level design of a system for potential security issues
related to its assets of interest [32]. These threat analysis
techniques are routinely used in application domains where
upfront design is still dominant. For instance, in safety-
critical systems like automotive. Microsoft’s STRIDE is a
well-known threat analysis technique that is also used in the
automotive domain [29, 15]. This technique has the ten-
dency to lead to the discovery of a high volume of poten-
tial threats [33, 28]. After the discovery phase, threats are
ranked according to their risk value, which is a combina-
tion of impact and likelihood. As a result, many threats are
later-on discarded due to their low risk value, even though
significant time went into their discovery. This is a clear el-
ement of inefficiency, which is common to these family of
so-called risk-last approaches, where risk is considered only
after the threats have been found.

In the past decade, speed has become an essential trait
of software development (e.g., agile, continuous integration,
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DevOps, etc.) and any up-front inefficiency is considered
unaffordable time waster. Consequently, such a fast pace
causes challenges for threat analysis [8]. Further, security
expertise is scarce in organizations and the time available
from experts needs to be used in an optimal way. Driven by
these observations, in prior work we have defined eSTRIDE,
a risk-first threat analysis approach [34]. The core idea is to
enrich the analyzed model with risk-related information, so
that the analysis activity is more focused on the parts of the
architecture where assets with high-priority security objec-
tives (e.g., confidentiality) are located. This would lead to
the early discovery of high-priority security threats, hence
by-passing threat prioritization all together. This seems
promising for organizations where development speed is key
to surpassing the competition. Yet, no empirical evidence
exists about the actual effect of trading off a bit of system-
aticity (a benefit of STRIDE) for a more focused attention
on high-priority threats (the goal of eSTRIDE). Could high-
priority threats go unnoticed? Are high-priority threats be-
ing discovered faster? These and similar questions beg for
an answer.

The purpose of this study is to gather empirical evi-
dence about the similarities and differences between a risk-
last (STRIDE) and risk-first (¢STRIDE) threat analysis tech-
nique (see Section 2) in an industrial setting. To this aim,
we conduct two case studies (see Section 3) with industrial
participants (15 in total) from two automotive organizations
located in different countries. Within each organization, we
observe and compare two teams analyzing the same system,
where each team uses one of the two mentioned techniques.

The contributions of this work are three-fold. First, we
try to understand how to optimize time and effort spent on
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Table 1
Activities of STRIDE and ESTRIDE

Step Activity STRIDE ESTRIDE

Building Scope discussion v v

diagram  Drawing the DFD v v
Model abstraction /refinement v v
Asset analysis v
Extending the DFD v

Analyzing Diagram exploration

Element by element Scenario-based

diagram  Threat types considered Mapping table Pruned mapping table

Attack scenario development v v

Threat feasibility discussion v v

Threat reduction v v

Threat consequences and prioritization v
performing threat analysis. To this aim, we study the pro- ] Fleet
ductivity levels of a risk-first analysis and the discovered Driver tech.
high-priority threats. Second, we carry out a qualitative and Credentials Central Systems
quantitative comparison of how the two techniques are per-
formed, e.g., by looking at what activities are more preva- SW

lent. This allows to identify key insights into the way teams
work when they use the two techniques and, accordingly,
gauge the potential for optimization. Third, we investigate
the effect of security expertise on the use of both techniques.
As security expertise is a scarce commodity, it is interesting
to study whether less skilled teams could produce acceptable
results with any of the two techniques.

The results of this study (Section 4) show no differences
in productivity and timeliness of discovering high-priority
security threats. But, we find differences in analysis exe-
cution. Specifically, participants using the risk-first tech-
nique found twice as many high-priority threats, developed
detailed attack scenarios, and discussed threat feasibility in
greater detail. In comparison, participants using the risk-last
technique found more medium and low-priority threats. In
addition, we find that security expertise has an effect (albeit
small) on the quality of analysis outcomes and analysis ex-
ecution. The results are further discussed in Section 5 and
their validity is reproached in Section 7. We contextualize
our results with respect to the related literature in Section 6,
and present our conclusions in Section 8.

2. The Compared Techniques

STRIDE — STRIDE is a family of techniques developed
by Microsoft to help identify threats (e.g., potential attack
scenarios) that software systems are exposed to, especially
because of design-level flaws. The name itself is an acronym
that stands for the threat categories of Spoofing, Tamper-
ing, Repudiation, Information Disclosure, Denial of Service
and Elevation of Privilege. For the definition of threat cate-
gories, we refer the reader to the documentation of STRIDE
[29]. In particular, this study considers the ‘STRIDE per el-
ement’ variant (hereafter STRIDE).
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Figure 1: STRIDE in action

Table 1 summarizes the activities performed during the
analysis with STRIDE. It is a model-based technique which
starts with the creation of a graphical representation of the
software system under analysis, namely as a Data Flow Di-
agram (DFD). Figure 1 shows a simplified DFD and how it
is used during STRIDE. We depict an industrial case from
the automotive context (also under analysis in this work) for
a firmware update of an Electronic control unit (ECU) in a
truck. On a high-level, the driver (or technician) connects
their mobile device to a WiFi dongle in their vehicle, logs
into the Mobile app (installed on their device), gets the soft-
ware from a remote software repository and installs it on the
ECU of their vehicle. Creating the DFD typically involves
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Figure 2: eSTRIDE in action

discussing the scope of the analysis (i.e., defining the breadth
of analysis), drawing the diagram (e.g., on a board), abstract-
ing or refining the model (hence defining the granularity of
the analysis), and so on. A DFD represents how information
moves across a software system and consists of processes
(active entities, like ‘Ger SW’ in Figure 1), data flows (ex-
changed info), external entities (e.g., ‘Driver’), data stores
(e.g., ‘SW storage’), and, optionally, trust boundaries (e.g.,
‘Central Systems’).

The second phase in STRIDE is the systematic explo-
ration of the DFD to identify the threats. It involves several
activities (see Table 1) which can be roughly grouped into
four steps (steps 1-4 in Figure 1).

First, the analysts explore the diagram one element at
the time (step 1). For each element type, STRIDE suggests
to look into specific threat categories, which is given by the
so called threat-to-element mapping table (step 2 in Figure
1). For instance, for external entities (e.g., ‘Driver’) the an-
alysts are suggested to only look for spoofing and repudia-
tion threats. Next, the analysts engage in a brainstorm to de-
velop concrete attack scenarios, during which they can use
exemplary threats (of each category) for inspiration (step 3).
Each discovered threat must be discussed with respect to its
feasibility in order to determine its relevance. The relevant
treats and discovered attack scenarios are immediately docu-
mented. Sometimes, the same threats can be present at mul-
tiple locations in the diagram (e.g., an information disclosure
threat on all data flows that are not encrypted). In such situ-
ations, analysts can apply the threat reduction technique and
continue with the diagram exploration. This technique es-

sentially allows copying the identified attack scenarios to all
the said locations in the report. After the diagram has been
explored the threats are prioritized according to their risk
value (step 4). As the risk assessment happens at the end,
STRIDE is a ‘risk-last’ threat analysis technique. An unfor-
tunate consequence of this approach is that the effort spent
identifying low-risk threats could be a potential time-waster
and a source of lower productivity.

ESTRIDE — The second technique we study is the Ex-
tended STRIDE (hereafter ESTRIDE), which is an example of
a ‘risk-first’ technique [34]. ESTRIDE is similar to STRIDE,
however the analysis focuses on parts of the architecture that
are related to assets with (at least one) high-priority objec-
tive and is limited to the threat categories that are relevant
for those assets. Therefore, ESTRIDE makes the implicit
assumption that high-priority threats are related with the
above-mentioned parts of the architecture'. As shown in the
right-hand side of Table 1, the analysis technique is similar
to STRIDE, with a few substantial differences. In ESTRIDE,
an asset analysis is performed at the beginning, during the
model building phase. This includes the identification of as-
sets, their security objectives (e.g., confidentiality should be
preserved) and their priority (e.g., high confidentiality). This
security relevant information is inserted in an extended di-
agram, or eDFD. Figure 2 shows an eDFD (of the same
system as shown before) and how it is used. For brevity,
we have omitted the accountability objective (effected by the
threat of repudiation) from the figure. The eDFD also car-
ries information about the source and sink of each asset (i.e.,
an information scenario), the type of communication chan-
nels in the system, and domain assumptions that are relevant
to the security analysis (e.g., existing security solutions). To
save time, this additional information is only added to ele-
ments involved in the transfer (or storage) of high-priority
assets (as observed in Figure 2).

The second phase of ESTRIDE is a guided exploration of
the eDFD (steps 1-3 in Figure 2). Instead of visiting each
element in the graph (as is done in STRIDE), the analysts
consider end-to-end information scenarios (i.e., paths from
source to sink, such as the path of the ‘SW’ from the ‘SW
Storage’ all the way to the ‘ECU"’) of assets with at least one
high-priority objective (step 1).

Further, in step 2 the mapping table used in STRIDE is
pruned before threats are identified. In particular, the cat-
egories of threats that do not relate to the high-priority ob-
jectives are discarded. For instance, in Figure 2 the only
security objective with a high priority is integrity, thus in-
formation disclosure (which directly effects confidentiality)
and denial of service (effecting availability) threats can be
skipped. Spoofing and elevation of privilege threats can not
be skipped so easily, as they can potentially threaten all the
security objectives. However, the analysts may make do-
main assumptions about existing security solutions. For ex-
ample, they may assume a mutually authenticated and end-
to-end encrypted channel (‘VPN’ in Figure 2) between the

IThis paper does not investigate this assumption. However, in our case
studies, we found no evidence contradicting it.



components of the ‘Central Systems’ and the ‘Mobile app’.
Therefore, spoofing the process ‘Get SW’ to distribute mali-
cious updates could be skipped in the analysis. In this case,
spoofing the ‘ECU’ or the ‘WiFi dongle’ must still be con-
sidered.

Similar to STRIDE, attack scenarios are built and dis-
cussed for feasibility with respect to the domain, and threat
reduction can be applied (step 3). However, using ESTRIDE
the analysts are equipped with more information to discuss
the feasibility (e.g., existing security solutions). The ex-
pected benefit is a reduced effort due to bypassing threat pri-
oritization (step 4 in STRIDE) and investigating fewer threats.

3. Design of the Study

We conduct two case studies where we compare STRIDE
to the ESTRIDE. In what follows, we present the research
questions, industrial cases used in this study, and the partic-
ipants. We also describe the task performed by the partici-
pants, the on-site workshops, and the data collection meth-
ods.

3.1. Research Questions

This study answers research questions regarding the dif-
ferences in the analysis outcomes (RQ1, RQ2, RQ4) and ex-
ecution (RQ3, RQ4) for the studied techniques.

RQ1. What are the differences between a risk-last and a
risk-first analysis technique in terms of productivity?
Risk-last threat analysis prioritizes threats at the end of the
analysis procedure. In contrast, risk-first analysis aims to by-
pass threat prioritization by analyzing the high risks first, at
the cost of a more extensive modeling phase. The purpose of
the first research question is to understand whether the extra
up-front effort has an impact on the productivity, measured
as the amount of correctly identified threats per time unit.

RQ2. What are the differences between a risk-last and

a risk-first analysis technique with respect to the timeliness
and amount of discovered high-priority threats?
In realistic circumstances, threat analysis sessions are
pressed for time. Achieving complete coverage with a man-
ual analysis is challenging in this context. Therefore, threats
are often overlooked [33, 28]. It seems reasonable to ‘know-
ingly’ overlook low-priority threats as compared to high-
priority threats. The purpose of the second research question
is to investigate whether risk-first analysis produces high-
priority threats faster (and in a larger quantity) when com-
pared to the risk-last analysis technique.

RQ3. What are the differences between a risk-last and a
risk-first analysis technique with respect to both the timeli-
ness and the amount of activities as well as activity patterns?
Apart from the activities in Table 1, important events and
support activities take place during a threat analysis session.
For instance, updating the diagram, or making an assump-
tion. Support activities include pointing at the board, tak-
ing a break, documenting, referring to case documentation,
etc. Due to the repetitive nature of manual threat analy-
sis, these activities tend to re-occur. We are interested to

investigate which activities appear more often or sooner,
and how that differs for the two techniques. In addition,
we observe combinations of activities, or activity patterns
to understand which technique better facilitates constructive
thinking. Therefore, the purpose of the third research ques-
tion is to investigate the differences in the ‘way of working’
for the studied techniques.

RQ4. What is the effect of the security expertise of the

participants on the outcomes and execution of a risk-first and
risk-last analysis technique?
Previous studies paint a picture of the current security activi-
ties, skills [27] and threat analysis practices [5, 8] in agile or-
ganizations. In [5] three (out of four) interviewed companies
revealed that developers are already involved in threat analy-
sis. Further, in two organizations [5] they are even responsi-
ble for identifying threats, but still need input (i.e., from se-
curity managers, or consultants) when it comes to asset and
risk analysis. Considering the fairly acceptable performance
measured for STRIDE in the academic setting [28, 33], we
are interested to study the effect of security expertise on
the quality of analysis outcomes and technique execution for
both techniques.

3.2. Industrial Partners

ORG A The study was first executed within a multina-
tional automotive organization with over 100 000 employ-
ees worldwide. The core activity of ORG A is the produc-
tion, distribution and sale of trucks, buses, and construction
equipment. This multinational has established security prac-
tices in the development life-cycle and performs STRIDE-
like threat analysis on a daily basis. From a security stand-
point, participants from ORG A can be regarded as experts.

ORG B The study was replicated within a younger
(and smaller in terms of number of employees) organization
based in a different country. This organization is specializ-
ing in the development and testing of autonomous driving
solutions. In comparison, development teams in ORG B are
much smaller and more cross functional. In addition, threat
analysis is not performed routinely within ORG B. From a se-
curity standpoint, participants from ORG B can be regarded
as novices. We have gathered information about participants
background and roles within the organizations with an entry
questionnaire (discussed in more detail in Section 4.4). In
summary, the participants of ORG A perceive themselves
as security experts (or have previously undergone security
training), while the participants in ORG B regard themselves
as security novices.

3.3. Industrial Cases

We ask each company to identify a software system they
want to analyze from a security standpoint. Each of our
industrial collaborators put together a document describing
their system, including textual specifications and technical
diagrams. We provided feedback on the documentation in
order to guarantee that it was clear and contained enough in-
formation. In what follows we briefly describe the cases but
omit details due to confidentiality concerns. Both cases are



from the automotive domain, deal with (safety critical) em-
bedded software and are comparable in size and complexity.
As a term of measure, the diagrams created by the teams in
ORG A contained on average 42 elements, compared to 56
in ORG B.

ORG A- ECU update. The analyzed industrial case
is about the firmware update of an Electronic Control Unit
(ECU) in a truck. The update can be performed by an autho-
rized party (e.g., the driver who wants to change the speed
limiter when crossing countries) via a mobile app and with-
out visiting the workshop. In the analyzed scenario, the
driver (or technician) connects their mobile device to the
WiFi dongle of the vehicle to update the ECUs. Next, they
can use the mobile application to (i) configure (if properly
authorized) certain ECU parameters, or (ii) download the
ECU software updates from a remote software repository
(owned by the OEM) and install them on the ECUs of their
vehicle. This case is documented as a box-and-arrow refer-
ence architecture and a handful of pages containing text.

ORG B- HIL testing. The analyzed system is a simula-
tor with hardware in the loop (HIL). The platform allows the
execution of automated tests of autonomous driving compo-
nents. In the analyzed scenario, an authenticated test opera-
tor can schedule performance tests on a piece of embedded
software. The component is rigged to the system, which pro-
vides simulated sensor data and collects performance mea-
surements. The platform executes the appropriate test cases
and provides the obtained measurements to the test operator
(while also storing them in a private cloud).

3.4. Participants

In each organization, we divided the participants in two
teams, with each performing the threat analysis of the same
case with a different technique. Within each organization,
the two teams had similar size and comparable expertise. A
thorough discussion of the seniority level and security exper-
tise of the participants (across organizations) can be found in
Section 4.4.

ORG A The participants are industrial experts with some
experience in threat analysis. We assembled two teams with
3 (STRIDE) and 4 (ESTRIDE) members. The ESTRIDE team
had an additional member, a threat analysis trainee. Each
team member had an assigned role (process enforcer, secu-
rity expert, and domain expert) according to their expertise.
The roles were assigned to reflect how threat analysis ses-
sions were performed within the organization. The role of
the process enforcer is to ensure that the team was perform-
ing the analysis in accordance with the prescribed procedure,
and that the discussions (typically about attack feasibility) do
not loop or stray to unrelated topics. Security experts take
the lead in suggesting attack scenarios, and the role of the
domain experts is to describe technical details required to
contextualize the attack to the system under analysis. The
trainee in ESTRIDE was assigned the role of a security ex-
pert, given the background of the participant.

ORG B The participants are industrial experts with deep
knowledge of the case but with no prior threat analysis ex-

perience and little security background. We assembled two
teams with 3 members each. Differently from the other com-
pany, there was no strict role separations among members of
the groups. This is in line with the way of working at the
company. All members played a mix of both domain and
security expert. Additionally, each team had one student
member (doing an industrial MSc thesis at the company)
that joined as observer. The students did not contribute to
the work of the teams.

Supervision of participants. The experimenters were
present in all analysis sessions for two reasons. First, they
monitored the participants to ensure that the analysis was
indeed performed according the instructed procedure. Sec-
ond, they were taking notes and making observations, which
were used to support the data analysis afterwards. We re-
mark that the experimenters strictly refrained from influ-
encing the analysis in any respect and did not contribute
to the discussion. In ORG A, the experimenters joined
purely as observers. As the teams in ORG B were inex-
perienced with STRIDE, the experimenters also answered
procedural questions.

3.5. Task

In both organizations, the two teams were presented with
the same task: perform a threat analysis on the industrial
case using the prescribed technique. Both teams were asked
to (1) build a diagram based on the architectural documenta-
tion, and (2) analyze the diagram according to the assigned
technique.

Building. The type of diagram to be built differed across
teams: a DFD for the STRIDE teams and an eDFD for the
ESTRIDE teams. As described in Section 2, we remind that
eDFD are richer models that require, among other things,
more in-depth thinking about the assets. During this phase,
the participants resorted to their domain knowledge and the
available system documentation.

Extending (only ESTRIDE). The ESTRIDE teams were
asked to assign priorities to the security objectives of assets
before analyzing the diagram.

Analyzing. The second phase required a discovery of
as many threats as possible given the available time. The
STRIDE teams performed a systematic, element by element
exploration of the diagram. In contrast, the ESTRIDE teams
performed a guided analysis of each end-to-end scenario
containing (at least one) high-priority asset objective (see
Section 2).

Prioritizing (only STRIDE). At the end, the STRIDE
teams were asked to assign priorities (i.e., risk values) to
the threats they had identified. These self-reported priori-
ties are not directly used in the study, as the experimenters
made their own assessment of the priorities. However, hav-
ing this activity makes the comparison of the effort between
the two techniques more fair, as this is part of STRIDE and it
balances the extension activity in ESTRIDE.

Reporting. As soon as a threat was discovered, it was
documented in a report, which had to be submitted electron-
ically at the end. The reports contained a list of the iden-
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Figure 3: The execution of the study in both organizations

tified threats, their locations in the diagram, attack scenar-
ios exemplifying the threats. The participants were given a
template for the report, in the form of a spreadsheet. The
purpose of the template was to simplify and standardize our
analysis of the results.

3.6. Execution of the Study

Figure 3 depicts the execution of the study in both or-
ganizations. The study was split into sessions (3 hours per
day in ORG A and about 5 hours per day in ORG B) taking
place on site on three separate days during the same week.
The authors supervised all sessions. All the material (i.e.,
documentation of the industrial case, training material, de-
scription of task, report template) was shared with the par-
ticipants a week in advance. They were strongly encouraged
to read all the material (about 20 pages) before the start of
the study.

Day 1: Training. The teams were separated and specifi-
cally trained to accomplish their task. The training consisted
of brushing up basic security concepts (Joint Training in Fig-
ure 3), understand how to build DFDs (or eDFDs), and learn-
ing how to perform STRIDE (or eSTRIDE) 2. The training
sessions contained several hands on exercises for the partic-
ipants. Due to their limited security expertise, in ORG B
we planed a longer training session (ORG B: 5h vs ORG A:
3h), in which we elaborated more on the security concepts,
including security threats and countermeasures.

Day 2: Building diagram. On the second day, the teams
were given printed copies of all the material and started
worked on the task (see Section 3.5). Once the participants
finished building the diagram, they were allowed to continue
with the diagram analysis. In proportion to the complexity of
the system under analysis, we allotted only 3 hours per day
to simulate realistic time constraints in ORG A. We inten-
tionally relaxed this constraint in ORG B (5 hours) to avoid
overloading the less security experienced group of partici-
pants and putting them under stress.

Day 3: Analyzing the diagram. On the third day, the
teams were given the same printed material, and the diagram
they had created the previous day. They continued where
they left off until they finished with the entire task. All the

In ORG A, we had a separate, short training session with the process
enforcers to remind them to monitor the progress and speed up the discus-
sion, if necessary.

Table 2
Codes used to mark threat analysis activities and events. Codes
for events are marked by the { symbol

Activity Coded activities and events

groups
Building
diagram

Drawing on the board

Architecture abstraction/refinement

Asset analysis

Extending the diagram

Focusing on assets with high-priority objectives
Scope discussion

Making an assumptiont

Attack scenario development

Domain discussion

Threat feasibility

Threat consequence

Threat prioritization

Threat reduction

Using assumptionf

Updating diagramt

High-priority threat found¥

Low or Medium-priority threat foundf

Analyzing
diagram

Pointing at board¥

Referring to task descriptionf
Referring to assumptionst
Referring to case documentf
Referring to training material¥
Breakf

Unsure

Documenting

Support
activities

Detour Chatting
Difference in opinion

Terminology

teams finished in the allotted time, and some even finished
early (namely, the STRIDE team in ORG A and the ESTRIDE
team in ORG B).

3.7. Qualitative Measures
We have collected voice recordings of analysis sessions
in ORG A and took detailed hand notes of those sessions in
ORG B. This material has been analyzed to answer RQ3.
ORG A The tape recordings have been manually tran-



scribed by the first author using dedicated software®. The
manual transcription process helped the experimenters gain
a deeper understanding of the recorded material. After hav-
ing a thorough understanding of the recordings, the first au-
thor coded the transcriptions. Coding is a technique for sys-
tematically marking chunks of transcriptions. The analysis
of code occurrences reveals trends and supports a qualitative
analysis. Table 2 depicts the hierarchy of codes we used.
We coded activities and events related to diagram building,
analysis of diagram, support activities, and detours.

Activities are durable actions of participants, such as
drawing on the board and architecture abstraction and refine-
ment, which occurred during the diagram building phase.
Regarding diagram analysis, we coded the activities of attack
scenario development, threat feasibility discussion, threat
consequence, and the like. We also coded detour activities
(e.g., terminology discussion) and support activities (e.g.,
pointing on the board) to better understand activity patterns.

On the other hand, events (marked with § in Table 2) are
instantaneous participant actions. For instance, while dis-
cussing about the scope of the analysis the participants may
have made an assumption about trusting an external entity,
which they documented immediately. Certain events were
only possible to code after having assessed the reports. In
particular, the event of correctly discovering a high-priority
threat could be coded in the transcriptions after having as-
sessed the threats and their priorities. Therefore, we revis-
ited the transcriptions to manually insert such codes.

ORG B Recording of the analysis sessions was not al-
lowed by ORG B. Therefore, the experimenters took detailed
notes about the activities occurring during the sessions, in-
cluding timestamps of such activities and events. These
notes have been labeled, using a subset of codes in Table 2
(see codes in bold). We could not use all the codes because
it would be impossible to for the experimenters to reliably
keep track of that many activities in their note. Neverthe-
less, we believe that the subset of the codes is representative
and did not have an impact on the quality of the analysis.

Interviews. To answer RQ4, we have organized short
interviews (20 minutes for each team) at the end of the
third day. The semi-structured interviews contained a pre-
pared list of questions (6), which helped us better under-
stand their background knowledge and experience. Namely,
we inquired about their perceived progress, the challenges
they experienced, and asked them to explain how they ap-
proached the task at hand (e.g., What was your strategy for
visiting the diagram and why?). The collected information
(in the form of notes) was used as a complement to the ques-
tionnaire (see below) to better understand their background
knowledge and experience.

3.8. Quantitative Measures

Questionnaire. To answer RQ4, we designed a brief
entry questionnaire. We used the entry questionnaire to col-
lect the background of participants, in terms of the years of
professional experience, their familiarity with security (on a

3https ://www.gsrinternational.com/nvivo/home

scale with 4 levels), and their prior experience with threat
analysis (on a scale with 4 levels).

Reports. To answer RQ1 and RQ2, we assessed the
reports handed in by our participants. The hand-ins in-
cluded pictures of the created diagrams (DFD or eDFD), a
list of security assumptions made during the analysis, and a
list of identified threats (documented according to the pro-
vided template). The reported threats have been assessed
and marked as correct (true positives) or incorrect (false pos-
itives) by the first author. For the cases where the asses-
sor was not feeling fully confident (5 to 10 threats in each
organization), we had a discussion with the industrial ex-
perts (in both organizations) in order to come to an agree-
ment. This also acted as a form of quality control for the
assessment made.

A true positive (T P) is a correctly identified threat. This
means that: (a) the participants found the threat in the correct
diagram location, (b) the participants found a realistic attack
scenario for the security threat or the participants found a se-
curity vulnerability, and (c) the threat is correct with respect
to the assumptions the participants made.

A false positive (F P) is an incorrectly identified security
threat. This means that the participants found the security
threat in the wrong location or the threat is not correct with
respect to the assumptions the participants have made. Addi-
tionally, some reported threats had insufficient information
for us to assess them. In these cases, we followed a strict
approach and marked them as false positive as well.

With the above measures, we compute the aggregate in-
dicators of precision (P = PT+PF P) as the ratio between cor-
rectly identified threats and all reported threats.

We measured the time it took for participants to com-
plete the task. In particular, we measured the time it took for
participants to complete the phases of the task. For STRIDE
these were (1) building the diagram, (2) analyzing the dia-
gram, and (3) prioritizing the threats. Similar, for ESTRIDE
the phases were (1) building the diagram, (2) extending the
diagram, and (3) analyzing the diagram. We do not include
coffee breaks in the measured time. Accordingly, we com-
pute p.roduc.t1v1ty (Prod = %) as the amount of cor-
rectly identified threats per hour.

In both STRIDE and ESTRIDE, the experimenters as-
sessed the priority of the reported threats, validated the pri-
orities with the industrial partners (for the cases that were
less clear-cut), and used them as the ground truth in this
study. There were 2 disagreements (in ORG B), which were
resolved by consensus.

In the case of STRIDE, we have the opportunity to di-
rectly compare the reported vs assessed threat priorities.
This goes beyond the objectives of this work and is not
further discussed later on. However, we have observed
that in ORG A 73% of the reported threat priorities were
correct (i.e., they were assigned the same priority by both
the participants and experimenters). In particular, there
was a very good agreement on the low priorities, while in
other disagreements the priorities were raised by the ex-
perimenters (20% of the reported priorities), mostly from
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Table 3
Correct (TP) and incorrect (FP) threats reported by the teams

OrG A OrG B
N © (O
06 \O‘a N\O O@ W \S
e T o et (g5 ot
TP 12 13 6 40 32 14
FP 15 0 - 12 14 -
PrecisioNn (%) 04 1 08 07

medium to high. Therefore, our participants with security
background were very good at identifying low priority ob-
jectives, whereas they sometimes misidentified high priori-
ties as medium. In contrast, in ORG B only 32% of the re-
ported threat priorities were assigned the same priority lev-
els by experimenters. In addition, half of the reported pri-
orities were lowered (i.e., from high to medium). This large
discrepancy can be explained by the lesser security expertise
of the two teams in ORG B.

In case of ESTRIDE, the participants did not prioritize
the threats they reported and therefore we cannot make any
direct comparison.

3.9. Additional Quantitative Measures in ORG A

To answer RQ3, we also analyzed the transcribed record-
ings. As mentioned before, coding the transcriptions en-
abled us to track the exact location of a particular activity or
event in the transcript (e.g., position index in the text where
the activity starts). Therefore, we analyzed the locations of
the codes in the transcriptions and the spatial distance be-
tween them. The spatial distance between codes is a proxy
measure of time distance between activities. We used the
distance in the text instead of the actual time distance for
convenience reasons, as the transcription software did not
provide timestamps for the transcribed text. However, the
spatial distance has some advantages. For instance, it is in-
sensitive to a pause in the conversation. The normalized av-
erage distance between codes was measured as the average
number of characters separating the (starting indexes of the)
occurrences of each two codes, normalized to the total length
(in characters) of the transcription.

4. Results

For each research question, this section reports the re-
sults of the objective analysis of the collected data. We fur-
ther discuss and answer each research question in Section 5.

Before we dwell on the RQs, Table 3 reports the ob-
served levels of true positives and false positives in each
team (STRIDE vs ESTRIDE) of the two organizations (ORG A
vs ORG B). The table also shows the threats that are in com-
mon across each pair of teams (this is further discussed in
Section 5. Within organizations, the number of correctly re-
ported threats (TPs) is similar (ORG A: 12 vs 13 and ORG B:
40 vs 32). In ORG B the amount of mistakes is similar be-
tween treatments (STRIDE: 12 vs ESTRIDE: 14). Therefore,

Table 4
RQ1. Productivity

OrG A OrG B

STRIDE ESTRIDE STRIDE ESTRIDE

BuiLpiNnG DFD (h) 1h10  0Ohl5 1h55 1h05
ExTENDING DFD (h) - 2h20 - 1h15
ANALysis (h) 2h20  2h35  4h15  3h25
PRIORITIZATION (h) 0h20 - 0h50 -
TotAL TIME (h) 3h50  5h10  7h00  5h45
Probuctivity (TP/h) 3 2.6 5.7 5.6

the precision of the teams in ORG B is similar (STRIDE: 0.8
vs. ESTRIDE: 0.7). However, in ORG A the STRIDE team
reported 15 incorrect (FPs) threats while the ESTRIDE team
reported none. Most of the incorrect threats of this team
(13 out of 15) were marked as such due to not having suf-
ficient information for their assessment (see Section 3.8).
This is reflected in the measured precision (STRIDE: 0.4 vs
ESTRIDE: 1).

The results concerning the precision are inconclusive
due to the strict assessment in ORG A (i.e., threats not hav-
ing sufficient information are marked as incorrect), but, oth-
erwise, we have not observed major differences between the
two techniques.

4.1. RQ1: Productivity of Teams

As shown in Table 4 (bottom line), the productivity lev-
els are pretty similar across the two techniques. As discussed
later in Section 4.4, there are some differences in productiv-
ity between the two organizations.

We have looked into the time it took for each team to
accomplish the different parts of the given task. Across or-
ganizations, it took the ESTRIDE team less time to build the
the initial DFD diagram (ORG A: Oh15 vs 1h10 and ORG B:
1h05 vs 1h55). However, the ESTRIDE teams had to put in
significant extra time to extend the diagrams with the neces-
sary security information (see Section 2). In ORG A the time
spent on analysing the diagrams and identifying the threats
was similar across teams, while in ORG B the ESTRIDE team
spent about 1h less on this task. Finally, the STRIDE teams
had to put in additional effort to prioritize the identified
threats at the end (this activity is not necessary in ESTRIDE).

4.2. RQ2. Discovering High-Priority Threats

As shown in Table 5, in both organizations, the ESTRIDE
teams have found more high-priority threats (ORG A: 62%
vs 33% and ORG B 47% vs 15%). Only a part of the discov-
ered threats were common, therefore we have observed that
ESTRIDE is inclined to produce more high-priority threats
compared to STRIDE.

Figure 4 depicts when the teams discovered high-priority
threats in ORG A*. We have manually inspected the record-
ings to recover the time-stamps of the discovered high-

4This data in not available in ORG B because we were not allowed to
tape the sessions.



Table 5
RQ2.
low (L) priority.

The correct threats (TP) are broken down into high (H), medium (M) and

ORrG A Orc B
TP STRIDE ESTRIDE COMMON STRIDE ESTRIDE COMMON
H 4 (33%) 8 (62%) 4 6 (15%) 15 (47%) 4
M 2(17%) 1 (1%) - 22 (55%) 10 (31%) 4
L 6 (50%) 4 (37%) 2 12 (30%) 7 (22%) 6
ToraL 12 13 6 40 32 14
Day 1 Day 2
STRIDE L J o | ® I
0h00' 0h28' 0h57' 1h26' 1h55' 2h24'  2h52' 0h00' 0h28' 0h57' 1h26' 1h55' 2h24' 2h52'
eSTRIDE o " ( X J [ X J ] .ql
0h00' 0h28' 0Oh57' 1h26' 1h55' 2h24'  2h52' 0h00' 0h28' 0h57' 1h26' 1h55' 2h24' 2h52'

Figure 4: RQ2. High-priority threats (dots) discovered by the STRIDE (top) and ESTRIDE (bottom) team in ORG A. The end

of each session is marked with a double vertical bar.

priority threats due to the importance of this code. The
STRIDE team started analyzing the diagram one hour into
the first day and discovered most high-priority threats during
the first day. The last high-priority threat was discovered by
the STRIDE team about 40 minutes into the second day. The
ESTRIDE team started analyzing the diagram on the second
day, hence they discovered most high-priority threats dur-
ing the second day. Yet, they discovered one high-priority
threat already during the first day while discussing security
objectives of assets and their priorities.

Compared to the STRIDE team, the ESTRIDE team did not
find high-priority threats faster.

Although we do not have precise measurements, we have
informally observed a similar trend regarding the discovery
time of high-priority threats in ORG B. In addition, we re-
mark that many high-priority threats were found around the
trust boundaries (in both teams), therefore the strategy of
visiting the diagram may have an impact on the timely dis-
covery of high threats.

4.3. RQ3. Focus and Activity Patterns

First, we report on the activity focus in both organiza-
tions. Then we report the timelines of activities, and activity
patterns for teams in ORG A.

4.3.1. Focus on Activities

The focus of activities was observed by analyzing the
coded transcriptions (for ORG A) and the structured notes
(for ORG B). Figure 5 shows the prevalence of each of the
four activity groups: building the diagram, analyzing the di-
agram to identify threats, performing support activities (like
taking breaks, referring to task description, training mate-
rial, etc. ), and detouring from the task (essentially, loosing
focus and wasting time). We remind the reader that we used
a subset of all codes from Table 2 in ORG B.

ORG A. During the first day, the STRIDE managed

Day 1

hr
=, 0%

eSTRIDE @b% Tk

® Analyzing = Building = Detour

Day 2

STRIDE

Support

(a) ORG A
Day 2

STRIDE @ 54%
% 4 8%
eSTRIDE @ o
2o,

® Analyzing = Building = Detour

Day 1

Support
(b) ORG B

Figure 5: RQ3. Distribution of activities in both organizations.

to complete the diagram and started the identification of
threats. In general, the team did not focus on one particular
activity. Building the diagram covered 28% of the transcrip-
tion. The diagram analysis covered 27% of the time (mainly
discussing the domain and developing attack scenarios). The
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Figure 6: RQ3. Intensity of activity groups over time for the STRIDE (top) and ESTRIDE team (bottom) in OrRG A

team detoured often from the prescribed procedure (13%).
Finally, the STRIDE team was involved in more support ac-
tivities during the first day (32%).

The ESTRIDE team invested more on the diagram build-
ing during day 1 (45%). They did not identify threats during
the first day, however, they performed other analysis activi-
ties, namely a thorough asset analysis, for a similar percent-
age than the other team (25%). Similarly to the other team,
the ESTRIDE team detoured often during the first day (11%).
In contrast to STRIDE, the support activities amounted to
only 19% during the first day.

During the second day, both teams made minor changes
to the diagram (5% for STRIDE and 4% for ESTRIDE). The
STRIDE team focused on diagram analysis more than the
ESTRIDE team did (70% vs 58%), and without detouring
from the task. Support activities are comparable.

ORG B. Overall, a similar trend of activity focus can be
observed for the teams in the second organization. Namely,
the STRIDE team started analyzing the diagram earlier. How-
ever, the ESTRIDE team did not spend significantly more time
on building and extending the diagram. Both teams focused
on diagram analysis during the second day (STRIDE: 54%
and ESTRIDE: 62%). In contrast to ORG A, teams in ORG B
detoured from the prescribed procedure more often, which
is explained by a lesser familiarity of the participants with
threat analysis.

Summary. Contrary to our expectations, the ESTRIDE
team in ORG B (less security experienced) did not spend
more time to create and extend the diagram. This is surpris-
ing, considering the additional step of asset analysis, which
took more attention of the sibling team in ORG A. Similar to
STRIDE, the ESTRIDE teams still analyzed the diagram on the
first day, but focused on the analysis on the second day. We
did not observe differences in detour and support activities
across techniques.

4.3.2. Timeline of Activities in ORG A

Figure 6 depicts the intensity of each activity group over
time. We remind the reader that a comparable timeline of
activity codes can not be presented for ORG B as the orga-
nization did not allow to record the analysis sessions. The
intensity (darker color means more intense) is computed by
counting the number of code occurrences for each activity
group per ten-minute time frame. Note that, the STRIDE tran-
scription is almost half the size of the ESTRIDE transcription
(90,612 vs 151,907 characters). This explains the different

proportion of code occurrences in the timelines. In what fol-
lows, we discuss the similarities and differences in activities
during the first day and the second day.

Similarities (Day 1). In the first 15 minutes both teams
focused on building the diagram. In particular, both teams
focused on abstracting and refining the architecture, dis-
cussing the domain, discussing the scope, and drawing on
the board. Other support activities in this time window in-
clude referring to the case documentation. In the span of the
entire session, both teams sometimes detoured from the in-
structed analysis procedure. The detours during the first day
are fairly evenly distributed across teams. Both teams made
the assumptions during the first day, and made one last as-
sumption about one hour into the second day.

Differences (Day 1). About an hour into the first day
(see 1h15’ in left column of Figure 6), both teams focused on
support activities (particularly, referring to case documenta-
tion). The STRIDE team finished building the diagram after
about an hour. They read parts of the case documentation
aloud to validate the diagram before they started to analyze
it. On the other hand, the ESTRIDE team started extending
the diagram with domain assumptions after about an hour.
They verified each assumption by reading the case documen-
tation aloud. The ESTRIDE team started looking for threats
only on the second day. In contrast to STRIDE, the ESTRIDE
team made, overall, less assumptions and documented them
early on. The STRIDE team agreed upon some assumptions
but did not document them.

Similarities (Day 2). As instructed, both teams per-
formed activities related to diagram analysis which are
accompanied by support activities (mainly, documenting
threats). Figure 6 (right column) shows a strong focus on
analysis activities in three time frames. This can be observed
for STRIDE about fifteen minutes and one hour into the sec-
ond day. ESTRIDE strongly focused on analysis activities at
the end of the second day. In all three time frames, the teams
managed to thoroughly analyze one threat in a span of five
minutes. This entailed (1) developing attack scenario, (2)
using an assumption, (3) discussing threat consequence, (4)
determining feasibility, and (5) finding a correct threat. We
have observed that focusing on the above-mentioned pattern
(1-4) is beneficial for correctly discovering threats.

Differences (Day 2). Compared to the first day, both
teams detoured less from the instructed analysis procedure.
In particular, the STRIDE team did not detour at all. In fact,
the STRIDE team finished about one hour earlier. Compared



Table 6

RQ3 (OrRc A). The average spatial distance (in number of
characters normalized by transcription length) between activity
pairs in both teams. The top part contains the pairs that have
the most similar distances between the two techniques (small
values in the third column). The bottom part contains the
pairs with the least similar distances (big values)

Activity pairs STRIDE ESTRIDEA dist

Threat reduction & Ref. to as- close close 0.10
sumptions

Terminology & Domain discus-  close close 1.70
sion

High-priority threat found & close  close 1.84
Attack scenario or vulnerability

Asset analysis & Updating dia-  far close 29.0
gram

Ref. to training material & Un-  close far 38.38
sure

Scope discussion & Updating far close 38.24
diagram

to ESTRIDE, during the second day the STRIDE team focused
less on feasibility analysis and on attack scenario develop-
ment. The STRIDE team often updated their diagram during
the second day. Concretely, the team merged data flows and
removed one external entity and three data stores. Simplify-
ing the diagram helped the team to finish early.

Summary. During the first day the ESTRIDE team spent
more time building the diagram and during the second day,
the STRIDE team did not detour from the analysis procedure.
We further discuss this in Section 5.

4.3.3. Distance between Activity Pairs in ORG A

We calculated the average distances between all activity
pairs for both teams. We then compare the average distance
of each pair across the two treatments, by computing the dif-
ference. In Table 6, we focus on the activity pairs that have
the most similar distances (top) and those with the most dif-
ferent distances (bottom) between the two techniques. For
a more complete account, Figure 7 shows this difference for
all activity pairs with extreme values. Specifically, we depict
the difference if the two codes appeared either close to each
other, or far from each other in the transcription of one of the
treatments. Note that some activities could only be observed
in one of the treatments (e.g., threat prioritization was only
performed in the STRIDE team) and therefore do not appear
in this Figure.

In addition, we analyzed the distances between single ac-
tivities in relation to all other activities for both teams. In
particular, Figure 8 shows the average distance between find-
ing a high-priority threat and each other activity.

Similarities. Both teams referred to their assumptions
during threat reduction to make sure the reductions do not
lead to overlooked threats (Adist = 0.10). When the teams
referred to assumptions, they read the assumption out loud.
In addition, both teams engaged in a domain discussion
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while clarifying the terminology. Finally, both teams found
high-priority threats while developing attack scenarios or
identifying vulnerabilities.

Figure 8 shows, that the average distance between using
assumptions and finding high-priority threats is small in the
transcriptions of both teams. The teams used assumptions
to justify their reasoning for a threat or vulnerability exis-
tence. Therefore, the average distance between referring to
assumptions and a finding high-priority threat is small in the
ESTRIDE transcriptions.

Differences. In contrast to STRIDE, the ESTRIDE team
performed an asset analysis and iteratively updated the dia-
gram with the extra security information (Adist = 29.0). In
addition, the ESTRIDE team discussed the scope of the analy-
sis while updating the diagram. For instance, they discussed
which parts of the system can be left out of the analysis (as-
sumed as trusted). This was not discussed at length in the
STRIDE team. During the first day, STRIDE team referred to
the training material when unsure.

Compared to STRIDE, the average distance between find-
ing high-priority threats and discussing threat feasibility
(and consequence) is smaller in the ESTRIDE transcription
(see Figure 8). Further, the ESTRIDE team found the first
high-priority threat when analyzing the assets and extend-
ing the diagram in the first day. Compared to ESTRIDE, the
average distance between finding high-priority threats and
referring to training and case documentation is smaller in
the STRIDE transcription. In fact, the STRIDE team relied
more on the support material, whereas the ESTRIDE team re-
lied more on the domain expert. This may be due to factors
of team dynamics, rather then the differences in the tech-
niques. Finally, the STRIDE team made several assumptions
during diagram analysis, therefore the average distance be-
tween making assumptions are finding high-priority threats
is smaller, compared to the ESTRIDE transcription.

Summary. For both teams, assumptions played an im-
portant role in finding high-priority threats and in reduc-
ing threats. In addition, developing attack scenarios and
discussing threat feasibility supported finding high-priority
threats (more so in the ESTRIDE team). Certain similarities
and differences observed from Figure 7 exist due to the un-
derlying techniques procedures. For instance, attack sce-
nario development precedes documentation in both teams
(see small difference in Figure 7). Further, compared to
STRIDE, the procedure of ESTRIDE demands extending the
diagram with analyzed assets and thus we observe a differ-
ence for the activity pair asset analysis and updating diagram
across treatments. However, we are aware that differences
in activity patterns might also depend on factors related to
team dynamics rather then the differences in the techniques.

4.4. RQ4. Security Expertise

As shown in Table 7, we handed out an entry question-
naire to understand the background knowledge and experi-
ence in security of the participants. Clearly, we trust the self-
assessment of the participants.

From the answers, it is clear that the seniority (Q1) is
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Figure 7: RQ3 (Orc A) The average spatial distance between activity pairs with more extreme values (i.e., activities that appear
either close or far in individual treatments). Lighter shade represents pairs that have the most similar distances between the two
techniques (small values). Darker shade represents pairs with the least similar distances (big values)

Table 7

Entry questionnaire about seniority and security knowledge

Frequencies of the answers

Q1. How many years of working experience do you have?

ORrc A: 1 year (2) 2 - 5 years (2) 5 - 10 years (0) >10 years (3)
Orc B: 1 year (1) 2 - 5 years (2) 5 - 10 years (2) >10 years (3)
Q2. How would you rate your familiarity with information security?

ORrRG A | No background (0)  Security novice (1)  Security trained (3) Security expert (3)
ORrRa B | No background (1)  Security novice (7)  Security trained (0)  Security expert (0)
Q3. How many threat analysis sessions have you been previously part of?

OrG A None (5) 1-5(1) 5-10 (1) 10+ (0)
Orc B None (7) 1-5(1) 5-10 (0) 10+ (0)

equally distributed between the participants of the two or-
ganizations. Also, the participants have, predominately, no
prior practical experience with threat analysis (Q3). Across
organizations, however, the participants differed with re-
spect to their knowledge about information security (Q2). In
ORG A most participants were previously at least trained in
security (3) or were security experts (3). In contrast, the par-
ticipants employed by ORG B considered themselves secu-
rity novices (7 out of 8), at best. We have also inquired about
their current role in the organization. In ORG A two partic-
ipants were security consultants, two were hired to conduct
threat analysis, and three participants were senior software
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architects with a security focused role. In ORG B two partic-
ipants were team leaders and the rest were software develop-
ers with experience in a variety of programming languages
and platforms.

In summary, the above observations confirm the fact that
participants from ORG A have a high security expertise with
respect to ORG B. In the following, we summarize the ef-
fect of such disparity on the outcomes and execution of the
two techniques.
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4.4.1. Effect on Analysis Outcomes

Compared to ORG A, both teams in ORG B made mis-
takes. Namely, the false positive rate (FP/(T P + FP)) is
23% and 30% in ORG B, while only one team (STRIDE) made
mistakes in ORG A (56%). We remind the reader that most
false positives of the STRIDE team in ORG A were assessed
as such due to missing information in the documented threat
scenarios. The achieved precision (i.e., correctness) of the
less experienced teams in ORG B is still high (0.8 and 0.7)
compared to the best performance achieved by more experi-
enced analysts in ORG A.

To gather more insight into the effect of security expe-
rience on the quality of the threat analysis outcomes, we
observed the distribution of the correctly identified threats
over the threat categories (i.e., STRIDE) and made a com-
parison between the two organizations. Figure 9 depicts the
number of correctly reported threats per category (irrespec-

Making an assumption
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tive of the technique) normalized by the total number of
correct threats in each organization. In ORG B (less secu-
rity experienced), the teams found more tampering, infor-
mation disclosure and denial of service threats, compared
to spoofing, and repudiation. Elevation of privilege threats
were not reported, which is reasonable considering that these
are very technical and often used a stepping stone for other
threats [29]. Incidentally, similar distributions have been
recorded in studies observing STRIDE performance in an
academic setting [28, 33].

In comparison, the threats found by ORG A are more
evenly distributed across threat categories. Discussing threat
feasibility led teams in ORG A to discard many tampering,
information disclosure, and denial of service threats within
the trust boundaries of the system. Possibly, the less experi-
enced teams are not able to make such judgements. Another
possible explanation is that the teams in ORG A modeled
smaller diagrams, in particular with respect to the number
of modeled processes. Namely, in ORG A 16% of modeled
elements were processes, while in ORG B 26% of elements
Were processes.

Further, the teams in ORG B took about the same amount
of time to build and extend the diagrams as teams in ORG A
(see Table 4), but spent more time analyzing threats, which
was observed as the most time consuming and challenging
task of threat analysis [38]. Despite longer sessions, the less
experienced teams in ORG B have a much higher produc-
tivity (about 6 TP/hour vs about 3). Higher productivity
does not, however, imply identification of more high-priority
threats. In fact, Table 5 shows that more experienced ana-
lysts identify a bigger percentage of high-priority threats, no
matter the technique used.

4.4.2. Effect on Analysis Execution

Overall, the focus of activities in ORG B is comparable
to ORG A (as observed in Figure 5). In both, more support
and diagram building activities occurred during the first day,
while during the second day the teams focused on diagram
analysis. But in ORG B, the difference in focus between the
teams is smaller. This is explained by the cross-functional
organization of teams in ORG B, which had a positive effect
on team dynamics. Further, we have observed that the less
experienced teams in ORG B did not discuss feasibility of
threats in detail. This observation is in line with the mea-
sured high productivity in ORG B, as teams rarely got stuck
in reasoning about the probability of threat occurrence and
its impact. However, the teams in ORG B detoured more of-
ten during both days. In particular, we have made note of
teams inquiring the experimenters on-site for support (e.g.,
‘Is the created diagram sufficient, can we move on?’). De-
spite such insecurities and shallow feasibility discussions,
the teams were able to quickly learn and correctly execute
the analysis regardless of the assigned technique.

5. Discussion

In this section we discuss the results and answer the re-
search questions.



5.1. RQ1: Productivity

Beyond counting the number of TPs, we are also inter-
ested in getting insight into whether the two techniques pro-
vide different results (conversely, overlaps), in terms of secu-
rity issues identified. Therefore, we have looked into the cor-
rect threats reported by both teams and identified those that
are similar with respect to (i) diagram location, (ii) threat cat-
egory, (iii) vulnerability and threat description. In ORG A,
six security threats (4 high, 2 low) were correctly discovered
by both teams. In this organization, the STRIDE team discov-
ered 6 threats that were not discovered by the ESTRIDE team
(2 medium and 4 low-priority). In such cases, the ESTRIDE
team either skipped some diagram locations by using reduc-
tions (2 low, 1 medium) or agreed that the attack is not fea-
sible (2 low, 1 medium). The ESTRIDE team discovered 5
threats that went unnoticed by the STRIDE team. In contrast,
these threats were of high (4) and medium priority (1). In
these cases, the STRIDE team could not find any vulnerabil-
ity or attack. A possible explanation is that the STRIDE team
may not have discussed threat feasibility enough to find fea-
sible attack scenarios or that they were simply overlooked.

In ORG B, 14 security threats (4 high, 4 medium, and
6 low) were common for the two teams. The STRIDE team
discovered some security threats that were not discussed in
the other team, but many were afterwards marked with a
medium (18) or low priority (6). Similar to ORG A, the
ESTRIDE team discovered several (11) high priority threats,
which were not discussed in the other team.

Concerning, productivity (RQ1), we did not observe a dif-
ference between the two techniques. Interestingly, how-
ever, the two techniques seem to guide the teams to the
discovery of different threats. Furthermore, the ESTRIDE
teams found more high-priority threats which were over-
looked by the STRIDE teams. In contrast, the STRIDE
teams discovered more threats of low-priority.

5.2. RQ2: Discovering High-Priority Threats

We looked into how the teams approached the explo-
ration of the diagrams and the potential relation to finding
high-priority threats. Despite the dictated exploration strat-
egy by the techniques, the teams were still free to choose
concrete elements to follow (e.g., which particular data flow,
or which asset flow to consider next). For instance, the
STRIDE teams started exploring the diagram starting from
one external entity, but then continued differently. STRIDE
of ORG A chose to first analyze all the processes, and then
proceed to other elements. The STRIDE in ORG B instead
explored the diagram following the steps of the scenario
(from the documentation) regardless of element types. In
both industrial cases, some high-priority threats were lo-
cated on the trust borders of the system (i.e., external en-
tities, data stores, and processes communicating with the
aforementioned). Thus, an out-side-in exploration strategy
may be useful to find high-priority threats sooner. In addi-
tion, an attack on the system boundary element is usually the
first step of a chained attack. Hence, accounting for the first
steps systematically (at the beginning) may help in discov-
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ering chained attack scenarios.

As observed, the ESTRIDE procedure helps in discover-
ing more high-priority threats, but to discover them sooner,
the technique must emphasise the importance of analysing
the asset sources and sinks first. In addition, an out-side-in
procedure may support the discovery of chained attacks.

Concerning high-priority threats (RQ2), we found that
the ESTRIDE teams found twice as many high-priority
threats compared to the STRIDE teams. Further, most
high-priority threats that were discovered by the STRIDE
teams were also included in the reports of the ESTRIDE
teams. In the context of the conducted case studies, the
ESTRIDE teams were more complete with respect to find-
ing high-priority threats. Yet, no evidence suggests that
ESTRIDE can identify high-priority threats sooner.

5.3. RQ3: Focus and Activity Patterns

The time spent in ‘detour activities’ is significant (be-
tween 10-20% in Figure 5). Regardless of the technique and
organization, the teams often discussed the terminology of
the threat categories: in particular, the spoofing category in
relation to tampering and repudiation. Perhaps, this could be
expected for novice analysts, but it happened consistently in
all teams. Generally, such detours (or disagreements) were
minimized by the process enforcer steering the discussion.
In ORG A the STRIDE team often referred to the material to
reach consensus, instead. Possibly, this motivated the team
to stay closer to the instructed procedure on the second day
(with no detours). The way participants handled detours
may depend on the team dynamics.

In ORG A, detours often happened when discussing
threat feasibility (especially so in the ESTRIDE team). This is
confirmed by the small average distance of codes for these
activities in the transcription. Therefore, feasibility analy-
sis may have slowed down the overall threat analysis. Dis-
cussing threat feasibility often leads to estimating the proba-
bility of threat occurrence, which is difficult and can lead
to ‘analysis paralysis’, where too much focus is put on a
single threat.

In ORG B, the feasibility of threats was not discussed
in great detail. Therefore this pattern (of slowing down the
analysis) did not emerge as prevalent. Further, we have ob-
served that detours happened due to discussing the terminol-
ogy and domain, rather then feasibility analysis.



Regarding the focus on activities (RQ3), we found that in
one organization (ORG A) the ESTRIDE team spent more
time on diagram building. Yet, in the other organiza-
tion (ORG B) the ESTRIDE team built the diagram faster
and still found more high-priority threats.  Across or-
ganizations, threat feasibility discussion lead to ‘analysis
paralysis’ which slowed down the overall analysis. For
what concerns the activity patterns, we found that teams in
ORG A were careful when making threat reductions, back-
ing those decisions by referring to assumptions. In addi-
tion, assumptions were used by teams to justify the exis-
tence of threats (in particular high-priority). Our analysis
indicates that some similarities and differences in activity
patterns were observed due the underlying procedures of
the techniques, although differences might also depend on
factors related to team dynamics.

5.4. RQ4. Security Expertise

Our results show that less experienced teams (in ORG B)
made more mistakes in their analysis. We looked into the
FPs of these teams to better understand their nature.

Most incorrect threats in ORG B were duplicates
(STRIDE: 6 out of 12 and ESTRIDE: 12 out of 14). Dupli-
cates are threats with the same diagram location, category
and attacker scenario. For instance, two spoofing threats of
the same external entity with slightly different threat descrip-
tions. In the following example, the second scenario is a
special case (and thus a duplicate) of the first one:

“1: The attacker can send data from anywhere in the
world.”
“2: The attacker can pretend to be an operator.”

Other mistakes included incorrectly reported locations (we
have no explanation here) or threat categories (this is cer-
tainly due to a lack of familiarity with the definitions of
STRIDE). Finally, some threats were incorrect with respect
to the domain assumptions. For example, assuming an ex-
isting security measure for logging user actions on a data
base, and reporting a threat to accountability of a process
reading from that data base.

In summary, and in light of the scarcity of security pro-
fessionals, the trade-off of having more FPs in the analysis
results (when using less security experienced analysts) could
be acceptable in many organizations, particularly in smaller
ones. For instance, a security expert could be hired to val-
idate the analysis results at the end, which is a much more
light-weight and less costly activity than performing the en-
tire threat analysis. In fact, a recent study [5] reports that ag-
ile organizations currently employ similar strategies for con-
ducting threat analysis. In our experience, some mistakes
can be also quickly corrected via tool support (e.g., threat
locations). However, some mistakes may require more train-
ing on security vulnerabilities and classes of attacks (e.g., to
avoid infeasible attack scenarios).
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Regarding the security expertise (RQ4) we found that, in
the industrial setting, security expertise has an effect (al-
beit small in our case studies) on the quality of analysis
outcomes and analysis execution. Specifically, we found
that the teams with security novices tend to make more
mistakes (i.e., the precision is lower), discuss threat feasi-
bility in less detail, but are more productive (i.e., about 6
TP/hin ORG B vs about 3 TP/h in ORG A). Interest-
ingly, the difference in precision between the novice and
expert teams is not as significant as the difference in pro-
ductivity. This may suggest that security expertise may be
traded for a faster-paced and less precise threat analysis,
however future studies are needed to confirm this claim.

6. Related Work

In this section we position our contributions in the con-
text of related work. First, we discuss related treat analy-
sis methodologies and techniques organized with respect to
their risk inclusion. Second, we provide an overview of the
related empirical studies.

6.1. Risk-First Threat Analysis

The main characteristic of risk-first threat analysis is that
the outcomes of risk analysis (i.e., to some extend quantified
risk of compromised assets) are used as input to the threat
identification and analysis. However, little existing literature
actually leverages such information during threat identifica-
tion.

CORAS [20] is a model-driven threat analysis methodol-
ogy. The approach provides systematic guidelines and tools
(e.g., asset, threat, risk, and treatment diagrams) to analyze
risk during the design phase. After the creation of asset di-
agrams (step 3), the analysts conduct a high-level risk anal-
ysis, where the most important assets (and their threats) are
identified. Similar to eSTRIDE, the purpose of this step is
to focus the analysis discussion early-on, without going in
deeper detail. Next, the threats are identified by means of
structured brainstorming. But, the threats are not identified
only with respect to the important assets, and afterwards fur-
ther risk estimation (part of step 6) and risk evaluation (step
7) is required. In comparison, eSTRIDE suggest a detailed
account of risks (with respect to security objectives of assets)
and existing solutions (treatments) beforehand, and lever-
ages this information to perform reductions (i.e., the pruned
table in Figure 2).

Operationally Threat Asset, and Vulnerability Evalua-
tion (OCTAVE) [2, 6, 3] is an asset-centric threat anal-
ysis methodology. OCTAVE [2] is organized into three
phases. In the first phase, assets and threats are analyzed,
current practices and vulnerabilities are scrutinized, and se-
curity requirements are derived. In the third phase, threats
to the prioritized (in terms of risk) assets are used to pri-
oritize the security strategy. But, the risk analysis is con-
ducted after all the threats have been identified. Interest-
ingly, OCTAVE-S [3] is a light-weight variant targeted to
smaller organizations, and has a risk-first flavor. OCTAVE-



S starts with an asset identification and evaluation of secu-
rity practices. Similarly, SecRAM [21] is a security risk as-
sessment methodology, where primary assets (such as pass-
words) are first identified and analyzed in terms of impact.
With respect to the technology readiness of the analyzed sys-
tem, SecRAM provides practical guidelines for using the
methodology. Best practice catalogues of primary assets,
supporting assets, vulnerabilities, threats, and controls may
be used to help the analysts. Similar to eSTRIDE, SecRAM
and OCTAVE-S introduce risk-first analysis techniques to
analyze security threats. In addition, OCTAVE-S suggests
to only identify and analyse threats to important assets. In
contrast to both, the identified threats are still evaluated for
impact and probability (i.e., are prioritized), while eSTRIDE
aims to skip this step entirely.

6.2. Risk-Last Threat Analysis

The common characteristic of risk-last approaches is that
the outcomes of threat analysis are used as input for risk
identification and analysis. In this respect, the works that
follow differ from eSTRIDE.

LINDDUN [9] is a privacy threat analysis methodology.
LINDDUN is analogous to STRIDE in that it is model-based
(using DFDs), and executes a similar procedure (e.g., using
a privacy threat-to-element mapping table) to identify pri-
vacy threats. In addition, threat tree patterns are provided
by the methodology to help threat identification. After all
the privacy threats have been analyzed and documented with
misuse cases, the methodology suggests to estimate risk lev-
els for each threat (step 8). Notably, the methodology also
provides a mapping of privacy objectives to (more than 40)
privacy-enhancing techniques (PETs) which could be used
for planning mitigations.

Recently, Affiaet al. [1] proposed a risk management ap-
proach for e-commerce systems. The authors propose to use
STRIDE in combination with Information System Security
Risk Management (ISSRM) method. Similar to eSTRIDE,
the proposed technique starts with asset identification. In
what follows, the threats in [1] are identified by perform-
ing STRIDE (on the identified assets) and documented in
accordance with the ISSRM method. Essentially, the risk
values of threats are determined as soon as they are discov-
ered instead of all at once, as in step 4 in Figure 2. Fur-
ther, instead of using risk information, the authors scope the
analysis by eliciting only one threat per each STRIDE cate-
gory. In contrast to eSTRIDE, there is no notion of system-
atic threat reduction.

Mollaeefar et al. [24] propose a trade-off analysis tech-
nique to solve the problem of analysing risk with multiple
stakeholders in the context of privacy concerns. The authors
define the problem as a set of (weighted) threats, and a set of
security controls associated to said threats. To evaluate the
final risk, the technique also takes stakeholders preferences
into account. As the threats are input to their risk evaluation,
this technique is a risk-last analysis proposal.

PASTA [35] is a methodology targeting business owners
for estimating risk by means of attack simulation and threat
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analysis. The methodology contains seven steps, some of
which are similar to the analysis with STRIDE (e.g., creat-
ing data flow diagrams, diagram decomposition, determin-
ing trust boundaries, and risk and impact analysis - as a final
step). In comparison to STRIDE, PASTA suggests a broad
list of activities for identifying threats (and vulnerabilities),
and modeling attack scenarios.

6.3. Semi-automated Threat Analysis

Several techniques focus the analysis around system as-
sets and include risk as part of their technique, but are semi-
automated, thus the list of prioritized threats is not necessar-
ily the main outcome of the analysis. Though the following
works are certainly risk-centric, it is hard to determine the
exact stage where risk information is used.

Almorsy et al. [4] propose an automated technique us-
ing static security metrics (implemented as OCL constraints)
to conduct a trade-off analysis with respect to system se-
curity. One of the inputs to evaluate these metrics are so-
called Security Specification Models, which (among other)
contain security countermeasures, objectives and their pri-
orities. But, the proposed technique [4] may also leverage
system descriptions models, and abstract source code repre-
sentations in the analysis. Though all this information may
be used in the final trade-off analysis, not all representations
are necessary to evaluate the security metrics. For instance,
only two (out of seven) metrics include the condition about
the priority (in terms of risk) of components (or functions).

Halkidis et al. [12] have developed an approach for a
semi-automated risk analysis of threats by analyzing an-
notated UML diagrams. The authors built a mathematical
model of the systems and its defenses, and analyzed it by
means of fuzzy fault trees. Similar to eSTRIDE, Halkidis et
al. [12] extend the design model with existing security coun-
termeasures (e.g., Secure Pipe). But, the identified vulner-
abilities and approximations of risk values are the input for
the automated evaluation of risk.

Chen et al. [7] proposed a risk-driven approach for a
trade-off analysis of Commercial Off The Shelf (COTS)
products. In particular, the authors developed an automated
way to extract the vulnerabilities of COTS from a vulnerabil-
ity database (i.e., CVE), estimate threat risks, and conduct a
trade-off analysis by analyzing attack paths.

Finally, in the field of security requirements engineering
(SRE) several works [14, 25, 11, 10, 30, 36] are centered
around system assets (modeled as goals) and may consider
their risks. However, threat analysis is usually performed be-
fore the requirements are elicited. For an account of related
SRE works we refer the interested reader to [32].

6.4. Empirical Investigations of Threat Analysis
Two recent studies [8, 5] conduct case studies to investi-
gate the challenges of performing a STRIDE analysis. In [5]
the authors conduct semi-structured interviews in four ag-
ile organizations to investigate the perceived challenges by
practitioners conducting the analyses. Interestingly, despite
the fact that threat analysis is time-consuming, the practi-
tioners of all four agile organizations see value in performing



threat analysis at regular time intervals. Similar to this work,
the case studies involve industrial practitioners and use the
coding technique to discover patterns in the collected data.
But, the focus of the mentioned works [8, 5] is to record
challenges in agile organizations. In contrast, our work is
an empirical comparison of two techniques with respect to
performance and execution.

Recently, Stevens et al. [31] conducted a case study in-
vestigating the efficacy of threat analysis in an enterprise set-
ting. The authors develop qualitative measures to determine
the efficacy of the Center of Gravity (CoG) technique. The
CoG originated in the 19th century as a military strategy [37]
and is by nature a risk-first technique (but has not been ex-
tensively used to analyze software security). The authors
design a six-step protocol (including surveys and classroom
sessions) and involve 25 practitioners in the study. Similarly
to this study, they report a very high accuracy of the results
handed-in by industrial practitioners. In addition, they pro-
vide empirical evidence for a perceived usefulness of threat
analysis even after 30 and 120 days, which is very promis-
ing. In comparison, our study is novel in that it investigates
the timeliness of high-priority threats, and the activity focus
of a risk-first and a risk-last technique.

McGraw conducted a study including 95 compa-
nies [23]. The study reports on the security practices that
are in place in these companies. The BSIMM model does
not mention STRIDE per se, rather it highlights the impor-
tance of threat analysis. Microsoft has not published evi-
dence of the effectiveness of the STRIDE-per-element tech-
nique [29]. Similarly, eSTRIDE (coupled with eDFD) [34]
is a recently proposed technique, evaluated solely on the ba-
sis of an illustration.

Tuma et al. [33] conducted a controlled experiment com-
paring the two STRIDE variants, STRIDE-per-element and
STRIDE-per-interaction. Similarly to this work, their study
quantitatively measures the precision, and productivity of
both variants. Their study concludes that there is no statisti-
cally significant differences in precision, recall, and produc-
tivity of the two STRIDE variants. Yet, the authors speculate
that enlarging the analysis scope from one (or two) elements
to an end-to-end scenario might have an effect on perfor-
mance. Their findings are based on quantitative measures,
while we adopted a mixed methodology, including a quali-
tative analysis of recorded sessions.

Scandariato et al. [28] have analyzed STRIDE-per-
element and evaluated the productivity, precision, and recall
of the technique in an academic setting. The purpose of their
descriptive study was to provide an evidence-based evalua-
tion of the effectiveness of STRIDE. Our study, on the other
hand, provides a comparative evaluation (by means of a con-
trolled experiment) of STRIDE-per-element and the recently
proposed eSTRIDE.

Labunets etal [19, 18] have performed an empirical com-
parison of two risk-oriented threat analysis techniques by
means of a controlled experiment with students. The aim of
these studies was to compare the effectiveness and percep-
tion of a visual technique with a textual technique. The main
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findings in [18] show that the visual method is equally effec-
tive and leads to equal quality of analysis outcomes com-
pared to the textual method.

Existing literature reports on different measures, such as
perception of techniques compared to misuse cases (MUC).
The work of Karpati, Sindre, Opdahl, and others provide
experimental comparisons of several techniques. Opdahl et
al. [26] measure the effectiveness, coverage and the percep-
tion of the techniques. Karpati et al. [16] present an ex-
perimental evaluation of MUC Map diagrams focusing on
identification of not only vulnerabilities but also mitigations.
Finally, Karpati et al. [17] have experimentally compared
MUCs with mal-activity diagrams in terms of efficiency.

7. Threats to Validity

With respect to the external threats to validity, we con-
sider the threat to generalizability of the results. The study
was conducted in two different automotive organizations, yet
it is not clear to what extent can our findings be carried over
to organizations from other domains. In addition, the num-
ber of participants was small (15 in total).

With respect to the internal threats to validity, we men-
tion the confounding factors that may have influenced the
results. The most important confounding factor is team dy-
namics. The performance of a team might depend on how
well the participants work together. It is virtually impossible
to control for this factor in an industrial context, as partici-
pants are selected based on convenience and availability.

Another potential confounding factor is the different
background knowledge across teams. We control for this
factor by dedicating a whole workshop (3 hours in ORG A,
and 5 hours in ORG B) to training the participants. In ad-
dition, we have sent out a short exit survey (with about 10
questions) where we asked the participants whether they felt
sufficiently prepared to carry out the task. In both organi-
zations, participants felt like they had a clear understanding
of the task, were sufficiently prepared for it, and had a very
good understanding of the industrial case under analysis.

We also mention the risk of confirmation bias as some
of the researchers are authors of one of the techniques. Our
assessments of the reported threats directly impact the mea-
sured performance (e.g., the number of TPs effects the pre-
cision and recall). We mitigated this threat by discussing
our assessments (as a form of quality check) with partici-
pants (in ORG B) and reference experts (in ORG A). After
the workshops were finished and the reports were assessed
(about two weeks), we organized a meeting with the indus-
trial partners to discuss the less clear-cut assessments. The
industrial partners were closely familiar with the systems
under analysis and could argue for the existence of a threat
marked as a false positive (which was never the case) or the
misidentified threat priorities. In case of disagreements (2
priorities in ORG B), the assessment was discussed until a
consensus was reached.

Finally, we could not replicate the study in ORG B with
exactly the same methodology, as the organization did not al-



lowed us to tape-record the sessions. Some measures had to
be adapted, which might have led to more imprecise results.

8. Conclusion

This study investigates the benefits and shortcomings of
performing a risk-first (ESTRIDE [34]) compared to risk-last
(STRIDE [29]) threat analysis in an industrial setting. We
conducted two case studies with industrial participants em-
ployed by two organizations (based in different countries).
In this setting, we gathered empirical evidence about the per-
formance and execution of the two techniques. The contri-
butions of this work are three-fold: (i) a quantitative compar-
ison of performance, (ii) a quantitative and qualitative com-
parison of execution, and (iii) a comparative discussion of
the benefits and shortcomings of the two techniques. This
study found no differences in the productivity and timeli-
ness of discovering high-priority security threats. Yet, we
showed that the risk-first approach produces twice as many
high-priority threats (in both organizations). On the other
hand, the risk-last technique found more medium and low-
priority threats. Further, we found that security expertise
has an effect (albeit small in the context of this study) on the
quality of analysis outcomes and analysis execution. To
find high-priority threats sooner (in addition to their com-
plete account), the ESTRIDE procedure can be easily tailored
to an out-side-in diagram exploration strategy. An inter-
esting future direction could be observing the performance
of the two techniques by conducting a longitudinal study to
understand whether ESTRIDE’s benefits (prioritizing the dis-
covery of high-priority threats) out-weight the limitations
(required effort to build eDFDs and sacrificed coverage of
low-prioritized threats). In addition, future in-vitro studies
with (more participants) could help to generalize the results
about the effectiveness of eSTRIDE, especially when com-
pared to other risk-first approaches.
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