
Thesis for The Degree of Doctor of Philosophy

Efficiency and Automation in Threat Analysis of
Software Systems

Katja Tuma

Division of Software Engineering
Department of Computer Science & Engineering

Chalmers University of Technology and Gothenburg University
Gothenburg, Sweden, 2021

Efficiency and Automation in Threat Analysis of Software Systems

Katja Tuma

Copyright ©2021 Katja Tuma
except where otherwise stated.
All rights reserved.

ISBN 978-91-8009-155-8
ISSN 1652-876X

Technical Report No 191D
Department of Computer Science & Engineering
Division of Software Engineering
Chalmers University of Technology and Gothenburg University
Gothenburg, Sweden

This thesis has been prepared using LATEX.
Printed by Chalmers Reproservice,
Gothenburg, Sweden 2021.

ii

“It seems to me, Golan, that the advance of civilization is nothing
but an exercise in the limiting of privacy.”

- Janov Pelorat in Foundation’s Edge, a novel by Isaac Asimov

iv

Abstract
Context: Security is a growing concern in many organizations. Industries
developing software systems plan for security early-on to minimize expensive
code refactorings after deployment. In the design phase, teams of experts
routinely analyze the system architecture and design to find potential security
threats and flaws. After the system is implemented, the source code is often
inspected to determine its compliance with the intended functionalities.
Objective: The goal of this thesis is to improve on the performance of security
design analysis techniques (in the design and implementation phases) and
support practitioners with automation and tool support.
Method: We conducted empirical studies for building an in-depth under-
standing of existing threat analysis techniques (Systematic Literature Review,
controlled experiments). We also conducted empirical case studies with indus-
trial participants to validate our attempt at improving the performance of one
technique. Further, we validated our proposal for automating the inspection
of security design flaws by organizing workshops with participants (under
controlled conditions) and subsequent performance analysis. Finally, we relied
on a series of experimental evaluations for assessing the quality of the proposed
approach for automating security compliance checks.
Findings: We found that the eSTRIDE approach can help focus the analysis
and produce twice as many high-priority threats in the same time frame. We also
found that reasoning about security in an automated fashion requires extending
the existing notations with more precise security information. In a formal
setting, minimal model extensions for doing so include security contracts for
system nodes handling sensitive information. The formally-based analysis can
to some extent provide completeness guarantees. For a graph-based detection
of flaws, minimal required model extensions include data types and security
solutions. In such a setting, the automated analysis can help in reducing
the number of overlooked security flaws. Finally, we suggested to define a
correspondence mapping between the design model elements and implemented
constructs. We found that such a mapping is a key enabler for automatically
checking the security compliance of the implemented system with the intended
design. The key for achieving this is two-fold. First, a heuristics-based search
is paramount to limit the manual effort that is required to define the mapping.
Second, it is important to analyze implemented data flows and compare them
to the data flows stipulated by the design.

Keywords

Secure Software Design, Threat Analysis (Modeling), Automation, Security
Compliance

Acknowledgment
In the words of Isaac Newton, if I have seen further it is by standing on the
shoulders of Giants. Riccardo Scandariato, I owe you my gratitude for your
wise guidance, encouragement, and priceless advice. You introduced me to the
exciting world of research and on your shoulders I learned countless valuable
lessons. For your kind and devoted mentorship, I remain deeply indebted to you.

I am extremely grateful to my co-supervisors Musard Balliu, Gül Çalikli
and my examiner Robert Feldt for faithfully following my research and helping
me strengthen my work. I would also like to thank Jan Jürjens and the entire
RGSE group for welcoming me at the University of Koblenz-Landau. I am very
grateful to my co-authors Sven Peldzsuz, Laurens Sion, Daniel Strüber, and
Koen Yskout for the memorable debates and pleasant collaborations. Thomas
Herpel, Christian Sandberg, Urban Thorsson, and Mathias Widman, thank
you for many interesting discussions and your valuable perspective. This thesis
would not have been possible without all your help and support.

For the past four years I have been incredibly lucky for having the most
fantastic colleagues around me. I would like to especially thank my colleagues
Thorsten Berger, Richard Berntsson Svensson, Ivica Crnkovic, Regina Hebig,
Rodi Jolak, Eric Knauss, Grischa Leibel, Birgit Penzenstadler, Jan-Philipp
Steghöfer, and the whole SE group for embracing me as their own and creating
an amazing atmosphere. A special thanks goes to my colleague and pedagogics
mentor Christian Berger, who has shown me how fun and fulfilling teaching
can be. Richard Torkar, from day one you have made sure that I don’t forget
my mother tongue! Za tvojo podporo ti bom vedno hvaležna. Thank you
Linda Erlenhov, Francisco Gomes de Oliveira, Jennifer Horkoff, Philipp Leitner,
Antonio Matrini, Ildiko Pilan, and Joel Scheuner for all the awesome board-
game nights! I also want to thank my PhD brothers Mazen Mohamad and
Tomasz Kosinski for always being on my team. A huge thanks to my office
mates Rebekka Wohlrab, Sergio Garćıa and Piergiuseppe Mallozzi for bringing
color into the cloudy days.

I want to thank my friends Aura, Carlo, Lydia, Evgenii, Tuğçe, and Giacomo
for all the potlucks, summer BBQs, movie nights, and hard-core climbing
sessions. I will hold Gothenburg in my dearest memories because of you!

I am eternally grateful to my parents Tanja and Tadej for teaching me right
from wrong, supporting my career and loving me no matter what. My dear
brother Samo, thank you for putting up with your little sister all those years.
Hvala da ste mi dali tako močne korenine. Rada vas imam, moji Tumčki!

Finally, I could never have made it without the most important person
behind the scene: my husband, best friend, career advisor, and No. 1 paper
reviewer, Marco. Words can not express how grateful I am to have you in my
life. With you belaying me, I will fearlessly climb the next rock. Ti amo!

vii

viii

This research was partially supported by the Swedish VINNOVA FFI
projects “HoliSec: Holistic Approach to Improve Data Security” and “CyReV:
Cyber Resilience for Vehicles - Cybersecurity for Automotive Systems in a
Changing Environment” and the Horizon 2020 project “AssureMOSS: Assurance
and certification in secure Multi-party Open Software and Services”.

List of Publications

Appended publications
This thesis is based on the following publications:

[A] K. Tuma, G. Calikli, and R. Scandariato.
“Threat Analysis of Software Systems: A Systematic Literature Review”
Journal of Systems and Software (JSS), 2018.

[B] K. Tuma and R. Scandariato.
“Two Architectural Threat Analysis Techniques Compared”
Proceedings of the European Conference on Software Architecture (ECSA),
2018.

[C] K. Tuma, R. Scandariato, M. Widman, and C. Sandberg.
“Towards security threats that matter”
Proceedings of the International Workshop on the Security of Industrial
Control Systems and Cyber-Physical Systems (CyberICPS), 2017.

[D] K.Tuma, C. Sandberg, U. Thorsson, M. Widman, T. Herpel, and R.
Scandariato.
“Finding Security Threats That Matter: Two Industrial Case Studies”
In submission to the Journal of Systems and Software (JSS), 2020.

[E] K. Tuma, M. Balliu, and R. Scandariato.
“Flaws in Flows: Unveiling Design Flaws via Information Flow Analysis”
Proceedings of the International Conference on Software Architecture
(ICSA), 2019.

[F] K. Tuma, D. Hosseini, K. Malamas, and R. Scandariato.
“Inspection Guidelines to Identify Security Design Flaws”
Proceedings of the International Workshop on Designing and Measuring
CyberSecurity in Software Architecture (DeMeSSA), 2019.

[G] K. Tuma, L. Sion, R. Scandariato, and K. Yskout.
“Automating the Early Detection of Security Design Flaws”
Proceedings of the International Conference on Model Driven Engineering
Languages and Systems (MODELS), 2020.

ix

x

[H] S. Peldszus, K. Tuma, D. Strüber, J. Jürjens, and R. Scandariato.
“Security Compliance Checks between Models and Code based on Auto-
mated Mappings”
Proceedings of the International Conference on Model Driven Engineering
Languages and Systems (MODELS), 2019.

[I] K.Tuma, S. Peldszus, R. Scandariato, Daniel Strüber and J. Jürjens.
“Checking Security Compliance between Models and Code”
In submission to the Journal on Software and Systems Modeling (SoSyM),
2020.

Other publications
The following publications were published during my PhD studies, but are not
appended due to overlapping or unrelated content to the thesis.
(a) S. Jasser, K. Tuma, R. Scandariato, M. Riebisch.

“Back to the Drawing Board”
Proceedings of the International Conference on Information Systems Secu-
rity and Privacy (ICISSP), 2018.

(b) L. Sion, K. Tuma, R. Scandariato, K. Yskout, and W. Joosen.
“Towards Automated Security Design Flaw Detection”
Proceedings of the International Conference on Automated Software Engi-
neering Workshop (ASEW), 2019.

Research Contribution
I contributed with planning and conducting the systematic literature review
(Paper A). In this work I was responsible for selecting the studies, creating the
assessment criteria, data extraction and result analysis.

In the empirical study reported in Paper B, I helped conducting the ex-
periments (on-site) in the second year. I also built the base line analysis
(ground truth), assessed the reports with respect to the ground truth for both
experiments, and drove the result analysis.

For Paper C, I developed the approach during the workshops with our
industrial partners and evaluated it with an illustration.

In Paper D, I contributed with an improved analysis procedure (eSTRIDE),
prepared the study material, helped to design the case studies, conducted the
workshops (on-site), and analyzed the results.

The formalism behind the label extension in Paper E was contributed by
my co-author, Musard Balliu. For this work, I implemented the domain-specific
language using the Eclipse Plug-in Framework and conducted the evaluation.

In Paper F, I supervised the creation of the catalog of design flaws and I
re-evaluated the catalog.

In paper G, I was responsible for designing the empirical study, preparing the
study material, and collaboratively implemented the automated detection tool.
In addition, I conducted the study with the participants (and one expert) on-site
one University campus. Finally, I was driving the tool performance analysis.

In Paper H, I helped to shape the heuristic rules and the mapping, con-
tributed to the implementation of the approach (but was not the main driving
force), contributed to the design, and execution of the evaluation (including
result analysis).

In Paper I, I contributed to the design of the security compliance checks,
the implementation of the checks, the design and execution of two experiments,
and the result analysis of one of the experiments.

In all the appended papers (except Paper H), I was the driving force and
wrote major parts of the publications.

xii

Contents

Abstract v

Acknowledgement vii

List of Publications ix

Personal Contribution xi

1 Introduction 1
1.1 Positioning of Contributions with Respect to the Related Work 3

1.1.1 Threat Analysis of Design Models 3
1.1.2 Automated Security Analysis of Design Models 4
1.1.3 Security Compliance Between Model and Code 6

1.2 Research Focus . 8
1.2.1 High manual effort . 9
1.2.2 Low recall . 10
1.2.3 Disconnect between models and code 11

1.3 Paper Summaries . 12
1.3.1 SLR on Threat Analysis (Paper A) 12
1.3.2 STRIDE-per-el vs STRIDE-per-inter (Paper B) 13
1.3.3 Towards Security Threats That Matter (Paper C) . . . 14
1.3.4 STRIDE-per-el vs eSTRIDE (Paper D) 14
1.3.5 Flaws in Flows (Paper E) 15
1.3.6 Detection of Security Design Flaws (Papers F & G) . . 16
1.3.7 Structural Compliance (Paper H) 17
1.3.8 Security Compliance (Paper I) 17

1.4 Discussion . 18
1.5 Conclusion and Future Work 26

2 Paper A 31
2.1 Introduction . 32
2.2 Research methodology . 33

2.2.1 Research questions . 33
2.2.2 Search strategy . 35
2.2.3 Inclusion and exclusion criteria 37
2.2.4 Data extraction . 37
2.2.5 Quality assurance in this study 41

2.3 Results . 42

xiii

xiv CONTENTS

2.3.1 Overview of threat analysis techniques 42
2.3.2 RQ1: Characteristics . 47
2.3.3 RQ2: Ease of adoption 51
2.3.4 RQ3: Validation . 51
2.3.5 Recommendations for practitioners 53

2.4 Discussion . 54
2.4.1 Potential for improvement along current trends 54
2.4.2 Definition of Done (DoD) 56
2.4.3 Lack of precise guidelines 56
2.4.4 Generalization across domains 56
2.4.5 Ease of adoption . 58

2.5 Threats to validity . 59
2.6 Related work . 59

2.6.1 Security requirements engineering 59
2.6.2 Risk analysis and assessment 60

2.7 Conclusions and future work 61

3 Paper B 63
3.1 Introduction . 64
3.2 Treatments . 65
3.3 The experiment . 66

3.3.1 Experimental object . 66
3.3.2 Participants . 66
3.3.3 Task . 67
3.3.4 Execution of the study 68
3.3.5 Measures . 69
3.3.6 Hypothesis . 69

3.4 Results . 70
3.4.1 True positives, false positives, and false negatives 70
3.4.2 RQ1: Productivity . 71
3.4.3 RQ2: Precision . 72
3.4.4 RQ3: Recall . 72
3.4.5 Exit questionnaire . 72

3.5 Discussion . 73
3.6 Threats to validity . 75
3.7 Related work . 75
3.8 Conclusion . 76

4 Paper C 79
4.1 Introduction . 80
4.2 Running example . 81
4.3 An extended DFD notation . 83
4.4 Handling the threat explosion 86

4.4.1 Abstraction before threat analysis 86
4.4.2 Effort reduction during threat analysis 88
4.4.3 Effect of abstraction . 89

4.5 Related work . 89
4.6 Discussion and limitations . 91
4.7 Conclusion . 92

CONTENTS xv

5 Paper D 93
5.1 Introduction . 94
5.2 The compared techniques . 96
5.3 Design of the Study . 98

5.3.1 Research questions . 98
5.3.2 Industrial partners . 99
5.3.3 Industrial cases . 99
5.3.4 Participants . 100
5.3.5 Task . 101
5.3.6 Execution of the study 101
5.3.7 Qualitative measures . 102
5.3.8 Quantitative measures 104
5.3.9 Additional quantitative measures in Org A 105

5.4 Results . 105
5.4.1 RQ1: Productivity of teams 106
5.4.2 RQ2. Discovering high-priority threats 106
5.4.3 RQ3. Focus on activities and activity patterns 107

5.4.3.1 Focus on activities 107
5.4.3.2 Summary . 108
5.4.3.3 Timeline of activities in Org A 109
5.4.3.4 Distance between activity pairs in Org A . . 110

5.4.4 RQ4. Security expertise 112
5.4.4.1 Outcomes . 113
5.4.4.2 Execution . 114

5.5 Discussion . 114
5.5.1 RQ1: Productivity . 114
5.5.2 RQ2: Discovering high-priority threats 115
5.5.3 RQ3: Focus on activities and activity patterns 115
5.5.4 RQ4. Security expertise 116

5.6 Related Work . 117
5.6.1 Threat Analysis with Risk 117
5.6.2 Empirical Investigations 119

5.7 Threats to Validity . 120
5.8 Conclusion . 121

6 Paper E 123
6.1 Introduction . 124
6.2 Overview of the Approach . 125
6.3 Security Analysis for DFDs . 129

6.3.1 A security specification language 129
6.3.2 Semantics of SecDFD labels 132

6.4 Implementation . 135
6.5 Evaluation . 135

6.5.1 FriendMap . 136
6.5.2 Hospital . 136
6.5.3 JPmail . 136
6.5.4 WebRTC . 137

6.6 Discussion and limitations . 138
6.7 Related work . 139

xvi CONTENTS

6.8 Conclusion . 140

7 Paper F 143
7.1 Introduction . 144
7.2 Evaluated Security Design Flaws 145
7.3 Empirical Experiments . 146
7.4 Results . 149
7.5 Improving the inspection guidelines 150
7.6 Related Work . 154
7.7 Threats to Validity . 156
7.8 Conclusion . 156

8 Paper G 157
8.1 Introduction . 158
8.2 Background . 160

8.2.1 Design Flaws and Inspection Guidelines 160
8.2.2 Data Flow Diagram and Security Extensions 161

8.3 A Curated Data Set of Design Models and Their Security Flaws 162
8.3.1 Study Design . 162
8.3.2 The Resulting Data Set 164

8.4 Automated Detection of Flaws 166
8.4.1 DFD Model Extension 166
8.4.2 Leveraging the Extensions for Detection 167
8.4.3 Detecting Flaws . 167
8.4.4 Implementation . 168

8.5 Performance of the Automated Inspection Technique 169
8.5.1 Research Questions . 169
8.5.2 Results . 170

8.6 Discussion . 172
8.6.1 Creation of the Data Set 172
8.6.2 Automation . 173

8.7 Threats to Validity . 174
8.7.1 Internal Validity . 174
8.7.2 External Validity . 175

8.8 Related Work . 175
8.8.1 Automation of Security Design Analysis 175
8.8.2 Security Design Flaw Catalogs 177
8.8.3 Architectural Bad Smells and Anti-Patterns 177

8.9 Conclusion . 177

9 Papers H & I 179
9.1 Introduction . 180
9.2 Background . 182

9.2.1 Design-level model (SecDFD) 182
9.2.2 GRaViTY Program Model (PM) 184
9.2.3 Compliance . 185
9.2.4 Data Flow Analysis . 186

9.3 Enabling Compliance Checks with Automated Mapping Generation186
9.3.1 Corresponding Elements 187

CONTENTS xvii

9.3.2 Semi-automated Mapping 188
9.3.3 User Verification of Mappings 191
9.3.4 Manual Mapping of Elements 191
9.3.5 Compliance of Models and Code 191

9.4 Security Compliance with Static Program Analysis 192
9.4.1 Verification of Specified SecDFD Contracts 193
9.4.2 Optimized Data Flow Analysis 197

9.5 Tool Support . 198
9.5.1 Implementation . 198
9.5.2 Using the Tool . 200

9.6 Evaluation . 202
9.6.1 Evaluation of Mappings 203
9.6.2 Evaluation of the SecDFD Contract Verification 205
9.6.3 Evaluation of Optimized Data Flow Analysis 208

9.7 Threats to Validity . 211
9.8 Related Work . 212
9.9 Conclusion and Future Work 214

Bibliography 217

xviii CONTENTS

Chapter 1

Introduction

Security threats to software systems are becoming a growing concern in many
organizations, particularly due to the changes in legislation for handling private
user data (GDPR). Previous studies (summarized in [1]) have shown that infor-
mation security breach announcements result in a financial loss for the breached
organization. Notably, last year the British Airways was fined £183 million [2]
(1.5% of total yearly revenue) due to a data breach affecting 500,000 customers.

Despite best efforts, cyber-attacks are often successful due to poor security
practices. In August 2019, researchers discovered a vulnerability [3] in the
database of a biometric security platform (Biostar 2). In particular, they found
an unprotected database in the platform, where data was stored in plain text.
If exposed, this vulnerability could have allowed the attacker not only to expose
biometric information of over one million people, but also to gain access to
administrator accounts of the platform, possibly leading to serious criminal
activity (such as creating a new account to freely enter high-security facilities).

Software developers can be hindered in building secure solutions by fast-
pace development practices, code reuse, and the use of third-party software.
Commonly, vulnerabilities are introduced with the incorrect use of third-party
APIs. For instance, a recent report [4] revealed that about 24,000 Android
apps used insecurely configured Firebase databases, which allowed researchers
to gain read and write access to sensitive database records.

To avoid expensive data breaches, security should be considered early-on in
the software development life cycle [5]. Practitioners that value security in their
products adopt well established best practices, e.g., by applying secure design
principles [6] and patterns [7]. Architectural design models are often analyzed to
assure the desired properties of the system. Models can be analyzed from differ-
ent architectural perspectives (e.g., topological view, data view, access control
and permissions, functional view, etc.) and on several levels of abstraction.

The goal of this thesis is to improve on the performance of security design
analysis techniques (in the design and implementation phases) and support
practitioners with automation and tool support. The novelty of the thesis
contributions is judged with respect to the related work in Section 1.1. An
in-depth study of existing threat analysis techniques (Paper A) has spurred
three focused research directions which are presented in Section 1.2.

A recent report [8] shows that only about a third of 130 surveyed organiza-
tions analyze software architecture for what concerns security. The manual

1

2 CHAPTER 1. INTRODUCTION

effort that is today required to perform architectural threat analysis may be
a limiting factor for a more wide-spread adoption. Indeed, evidence suggests
that performing threat analysis manually (e.g., using STRIDE [9]) results in a
large number of discovered threats and can be repetitive [10] (also observed in
Paper B). After their discovery, the threats are prioritized based on risk values
and low-priority threats are often discarded. This way of working is suboptimal,
as effort is wasted on discussing low-priority threats. Further, eliciting threats
by considering each architectural element in isolation may be a source of repeti-
tiveness. We provide a solution for performing threat analysis with an enlarged
analysis scope (per asset scenario) and focusing on critical parts of the software
architecture. Concretely, we developed a model-based technique, which fits
particularly well in model-intensive industries, e.g., automotive. We propose a
notation extended with risk information (eDFD) accompanied by an improved
analysis procedure (eSTRIDE) for an efficient discovery of high-priority threats
(Paper C). The approach relies on making reductions to the problem and
solution space before and during the analysis. We empirically investigate the
effect of enlarging the analysis scope on technique performance in the academic
(Paper B) and industrial setting (Paper D). Section 1.3 provides summaries of
the appended publications.

Manual design analysis and inspection techniques [9, 11] are characterized
by a low recall (around 50% in Papers B and F), which means that many
security flaws can go unnoticed. A possible cause for this effect is that in many
existing techniques there is no correctness or completeness guarantees for what
concerns the analysis outcomes (as recorded in Paper A). To assure analysis
completeness, more automation of design-level security techniques is necessary.
To that end, we propose two solutions. First, we introduce a formally-based
detection of confidentiality flaws (Paper E). In information flow security, the
implementation is statically analyzed for a particular set of inputs to determine
potential leaks of sensitive information. Initially the inputs are assigned so-
called security labels. Typically, a high label refers to a private input and a low
label refers to a public input. Similarly, we propose an approach for information
flow analysis at design level. The approach is based on a light-weight formal
specification language (SecDFD) which we leveraged to propose a technique
for an automated analysis of confidentiality flaws with label propagation and
a security policy checker. Second, we propose a graph-based detection of five
security design flaws concerning various security properties (authentication,
confidentiality, integrity, and accountability). The five security design flaws
were selected from a catalog of security design flaws and their manual inspection
rules (presented in Paper F). To model the key security concepts commonly
referred to by the inspection rules, we suggest to use a design notation extended
with data types and security solutions (Paper G). Further, we developed graph
query patterns to automatically detect the presence of the five flaws in concrete
design models. We empirically compare the performance of the query patterns
over a curated data set of design models. In Section 1.4 we discuss the collective
results and answer the main research questions.

Finally, after the implementation phase, architectural design models are
rarely revisited. In fact, Hebig et al. [12] have studied 3295 open source projects
and found that only 26% ever updated their UML files at least once. Thus, there
is a disconnect between design models (possibly containing important security

1.1. POSITIONING OF CONTRIBUTIONS WITH RESPECT TO THE RELATED WORK 3

information) and their implementation. To address this issue, we introduce a
user-in-the-loop approach to establish a mapping between the intended design
and the implemented code (Paper H). We also extend the said approach to
include automated security compliance checks (Paper I). Concretely, we defined
a mapping between the DFD model (using the SecDFD presented in Paper E)
and the program model [13] which is extracted from the implementation. To
limit the required manual effort, we developed a heuristic-based search for
possible mappings, which is based on name matching and structural similarities
between the two abstractions. Paper I extends this work with two types of static
checks, which were used to verify whether implemented programs complied with
prescribed security properties in the SecDFD. In addition, using our approach we
show that the security information in the intended design can be used to reduce
the number of false positives reported by a state-of-the-art data flow analyzer.
We present our final remarks and chart a vision for future work in Section 1.5.

1.1 Positioning of Contributions with Respect
to the Related Work

This section includes a short background and a positioning of the main thesis
contributions with respect to the related literature.

1.1.1 Threat Analysis of Design Models
The first main thesis contribution focuses on improving model-based threat
analysis. Threat analysis includes activities which help to identify, analyze and
prioritize potential security threats to a software system and the information it
handles. A threat analysis technique consists of a systematic analysis of the
attacker’s profile, vis-a-vis the assets of value to the organization. The main
purpose for performing threat analysis is to identify and mitigate potential risks
by means of eliciting or refining security requirements. Existing threat analysis
techniques are commonly categorized as software-, risk-, and attack-centric.

Software-centric. Software-centric techniques focus the analysis around the
software (e.g., architecture design). Their first objective is to establish a good
understanding of how the system works before the threats are analyzed. For
instance, STRIDE is well-known software-centric technique which is extensively
used in practice (e.g., in the automotive industry [14], at Microsoft [9] and some
agile organizations [15]). In addition, it has been applied to analyze systems
from a variety of domains (such as IoT [16, 17], CI Pipelines [18], MySQL
DBs [19], Smart Grids [20], E-health [21], Networks and Protocols [22–24])
across different research communities. STRIDE is well documented and easy to
learn, which is witnessed by its popularity. It is using the Data Flow Diagram
(DFD) model to represent the architecture of the software under analysis.
The analysts manually visit the elements in the diagram and brainstorm for
potential security threats. At the end, the list of identified threats is prioritized
(based on risk values) to plan for most urgent mitigations. But, with larger
DFD models, the number of threats the analysts have to consider explodes,
resulting in a high manual effort [10].

Risk-centric. Risk-centric techniques (e.g., CORAS [25], OCTAVE [26–28],

4 CHAPTER 1. INTRODUCTION

PASTA [29]) focus on assets and their value to the organization. Their main
objective is to estimate the financial loss for the organization in case of threat
occurrence. For instance, CORAS [25] is a methodology comprised of a modeling
language and a multi-step procedure of analysis. It provides guidelines and
tools (namely, asset, threat, risk, and treatment diagrams) to analyze risk.
Risks are analyzed twice in the procedure of CORAS [25]. First after the
creation of asset diagrams (step 3), the analysts conduct a high-level risk
analysis, where the most important assets (and their threats) are identified.
Second, the risks are analyzed using threat diagrams, after which the risk can
be accumulated (using risk diagrams). However, an empirical comparison of five
risk-centric techniques [30] highlights its slow learning curve and long execution
time. Risk-centric techniques (specifically, OCTAVE [27] and PASTA [29], as
mentioned in [31]) are more appropriate for finding organizational risks, rather
than technological risks. Accordingly, risk-centric techniques require a deeper
understanding of the business goals and legal matters [32], which is scarce
in organizations. For instance, in some Agile companies [33], the developers
that perform threat analysis collect feedback from business experts for what
concerns asset and risk related information.

Attack-centric. Finally, attack-centric techniques (Attack trees [34], Misuse
Cases (MUC) [35], Problem and Abuse Frames [36–38], to name a few) focus on
the hostility of the environment and analyze attacker’s motives and behavior.
For instance, Attack trees [39] are formally grounded models of all possible
attacker actions. The root node (i.e., final goal of the attacker) is refined with a
combination of logical gates (e.g., and/or gates) down to leaf nodes. They have
been extensively used and adapted in the past [40] to analyze different properties
in various domains, including, for instance in the automotive industry (e.g.,
the EVITA method [14]). Attack trees are often used to support brainstorming
threats (e.g., in STRIDE [9], PASTA [29], and LINDDUN [11]). However,
creating new attack trees is challenging as it requires both advanced cyber
security background and technical knowledge about the domain. Besides the
approaches that are based on Problem Frames (e.g., the approach presented
in [36]), the outcomes of many attack-centric techniques are not tied to the
architectural elements of the system under analysis.

To understand how to reduce the high manual effort, we compare two
STRIDE variants in Paper B. Further, to focus the analysis on high-priority
threats without sacrificing the quality of outcomes and learnability, we introduce
a new (risk-centric) STRIDE variant in Paper C and evaluate it in Paper D.

1.1.2 Automated Security Analysis of Design Models
Many approaches propose to automate the analysis of design models to minimize
the resources needed for performing threat analysis in organizations. Often
such approaches are able to semi-automate the analysis. That is, they automate
parts of the analysis technique, while some parts still require manual effort.
Depending on the sophistication of the analysis automation, we continue
to describe knowledge-based automation of threat categories, graph-based
automation, and formal approaches.

Knowledge-based. The Microsoft Threat Modeling tool (MTM) [41] is a tool
developed to support the STRIDE methodology. MTM provides the ability

1.1. POSITIONING OF CONTRIBUTIONS WITH RESPECT TO THE RELATED WORK 5

to graphically represent the DFDs. The tool enables the generation of threat
categories for individual DFD elements with the use of the STRIDE threat-to-
element mapping table. Other works approach threat analysis automation in a
similar way. For instance, Sion et al. [42] present an approach which aims to
automate the selection of threat mitigations (i.e., matching threat categories
(e.g., spoofing) to security solutions). Yet, both approaches automatically
generate threat categories (based on the aforementioned mapping table), thus
actual attack scenarios still need to be discovered manually.

Graph-based. Design models (e.g., software architecture) can be sometimes
represented as graph-like structures. A common method for automating the
analysis of design models is by discovering patterns in such graphs. Depending
on the analysis focus, the graph patterns can be used to detect threats, vulner-
abilities, or security solutions. Seifermann et al. [43] presented an approach for
automatically analyzing the security of data-driven architectures. They propose
an architectural description language enriched with a data model. The architec-
ture is first transformed to an operation model, which is in turn transformed to
a logic program. Finally, logical queries are used to spot security flaws. How-
ever, the analysis is demonstrated for unauthorized authentication, while other
security design flaws (e.g., insufficient auditing) are not addressed. In addition,
the analysis is not conducted alongside the planned security mechanisms. Al-
morsy et al. [44] proposed an approach for automating the security analysis by
capturing vulnerabilities and security metrics. They developed an approach for
modeling a system and specifying signatures of vulnerabilities and security met-
rics with the Object Constraint Language (OCL). Yet, the suggested approach
does not provide a way to model data transformations, which affect security
properties. In addition, it is not clear whether the approach works for high-level
design models (such as the DFDs), as it takes as input a variety of system
description models (e.g., UML feature, component, class, and deployment dia-
grams). Berger et al. [45] develop graph query rules to check for vulnerabilities
in extended DFD models and evaluate them with case studies. The query rules
are based on the descriptions of existing vulnerability repositories (e.g., CWE,
CAPEC). Though the authors provide a way to extend the DFD with asset
sensitivity, their approach does not allow modeling of security mechanisms.

Formal. When more effort for modeling (and analysis of) system design
is justified, formal approaches can be adopted. Such approaches typically
require the modelers to have a strong background in formal methods and
topics alike. The automation of analysis reasoning in a formal setting comes
sometimes for free due to the underpinned semantics. Yet, the efficiency and
scalability of such approaches is often a challenge. Concretely, a survey on
graphical security models [46] reported that there is a lack of efficient generation
algorithms for tree-based models. Early work of Sheyner et al. [47] automate
the generation of attack graphs, based on the well understood formalism of
attack trees. Later-on Ou et al. [48] worked towards increasing the scalability
of attack graph generation. On the other hand, Xu et al. [49] approached
automating threat analysis with aspect-oriented petri nets. The authors model
the intended functions and security threats with Petri nets, whereas they model
threat mitigations with Petri net-based aspects. Given the presented semantics,
the authors are able to construct a search tree and verify whether certain
threat paths are possible in the model. Gerking and Schubert [50] propose

6 CHAPTER 1. INTRODUCTION

an approach for refining and verifying information-flow policies (i.e., non-
interference) for cyber-physical architectures. Their compositional verification
technique relies of a set of well-formedness rules for architecture refinement and
assembly of component diagrams, preserving non-interference. Compared to
DFDs, component diagrams are more detailed design models. With regards to
semantics of DFDs, the early work of Leavens et al. [51] and Larsen et al. [52]
extended the notation with specifications for expressing functional correctness
properties. But little work has focused on the security semantics of DFDs.

Since identifying feasible security threat scenarios depends on the knowledge
of emerging security attacks within a domain, we do not attempt to automate
generation of threat scenarios. Rather, we focus on strengthening the security
by automating the detection of security design flaws. To that end, we study
how to automate the security design flaw detection on high-level architectural
diagrams (i.e., DFDs) in Papers E, F and G. Our aim is to improve the
automation of model-based security analysis where the related work falls short.
First, we introduce a lightweight security specification of DFDs (Paper E),
extended with a simple label model for analyzing confidentiality flaws with
some completeness guarantees. Second, we study how to automatically detect
five security design flaws (for what concerns several security concerns) by means
of graph query patterns, which are executed over DFD models, enriched with
data types and security solutions (Papers F and G).

1.1.3 Security Compliance Between Model and Code
Once a design model has been analyzed and its security flaws have been fixed,
the results are of limited value if the implementation does not comply with the
security properties described in the model. The disconnect between the planned
and implemented security has been studied extensively in the domain of Model-
Driven Engineering (MDE) [53, 54], where the intended security properties are
propagated to code by means of forward engineering. On the other hand, many
approaches (summarized in [55]) suggest to solve the problem of disconnect
by means of reverse engineering, where often code annotations or intermediate
models are used to reconstruct the software architecture. Finally, traceability
management approaches study the relations between software artifacts to enable
change-impact analyses and support software maintenance. Though traceability
recovery approaches may also lean on reverse engineering techniques, we discuss
this research area separately. Concretely, we consider approaches that study
the refinement traceability (where the level of abstraction of the traced artifacts
lowers progressively), rather than variability within a family of models (e.g., in
software product lines engineering [56]) and their variations.

Forward engineering security. UML models have been heavily studied in the
context of security compliance by means of forward engineering. UMLsec [57] is
a security extension of the Unified Modeling Language. It enables developers to
express security relevant information in system specification diagrams. It has
been widely studied in the industrial context [58–60] and provides mature tool
support [61]. Fourneret et al. [62] combine the security analysis using UMLsec
with the generation of security tests. The authors specify and verify security
properties on UML state machines, which in turn are used to generate tests for
the implemented system. Further, Ramadan et al. [63] use model transforma-

1.1. POSITIONING OF CONTRIBUTIONS WITH RESPECT TO THE RELATED WORK 7

tions to generate security-annotated UML class models from security-annotated
BPMN models. Muntean et al. [64] extend UML statecharts with security
properties (e.g., source of a confidential record), generate the code (in C), and
then detect data flow violations statically in the implementation. The results
of the compliance checks are presented to the user with sequence diagrams.
But, the gap between statecharts (or class diagrams) and implementation
is much smaller compared to the gap between high-level design models and
implementation. Consider that the DFD notation does not allow modeling
conditional or sequenced data flows. The IFlow [65] approach presents a UML
extension with information flow properties, which is used to generate program
skeletons. The generated skeletons are then transformed to a formal model to
be proven with a theorem prover. The skeletons have to be manually completed
into a final implementation, over which standard information flow properties
can be checked using existing analyzers. The downside of relying on code
generation, though, is that such approaches can not be used to analyze software
implementations which have diverged from the original model, or code that
was not generated from a model.

Reverse engineering security. Scoria [66] is a semi-automated approach for
extracting and analyzing the Owner Object Graph annotated with security
properties (i.e., SecGraph) to find security flaws in the architecture. First, the
SecGraph is extracted from an annotated implementation. Second, software
architects can refine the SecGraph with additional annotations. Finally, soft-
ware architects can design queries to analyze the Sec-Graph. Similar to using
source code annotations, ArchJava [67] is a language extension for Java, which
integrates architectural concepts (i.e., components, connectors, and ports) into
the programming language itself. Extending the expressiveness of the program-
ming language with architectural concepts supports compliance analysis. For
instance, in [68] the authors extend ArchJava with security annotations and
develop architectural constraints to analyze security compliance. Though code
annotations (and language extensions) can increase program comprehension
and reduce maintenance costs, they also need to be well understood (together
with the source code) to be used correctly [69]. Fully comprehending security
code annotations is not trivial and may require additional developer train-
ing. Jasser [70] recently proposed an approach for analyzing system behavior
and detecting its discordance with a set of security rules, expressed with Lin-
ear Time Logic (LTL). The system behavior is extracted dynamically using
aspect-oriented programming. Before the security rules can be executed, the
source-level elements are mapped to the architectural elements. However, this
mapping is performed manually. To date, the sole attempt at establishing com-
pliance between DFDs and their implementation was introduced by Abi-Antoun
et al. [71] more than a decade ago. The authors automatically extract a DFD
(i.e., the source DFD) from the implementation. Next, the user specifies a map-
ping (using Reflexion models [72]) between a manually created high-level DFD
and the source DFD, which is then used to uncover inconsistencies. However,
the Reflexion models are created manually. In addition, the security analysis is
performed on the level of the DFD, as opposed to the implementation.

Traceability. Most traceability link recovery techniques seek to establish
a connection between requirements and code [73]. To this end, the proposed
approaches use information retrieval techniques in combination with heuristic-

8 CHAPTER 1. INTRODUCTION

Low
Recall

Disconnect
to Code

High
Manual
Effort

Sy
st

em
at

ic
 L

it.
 R

ev
ie

w
 (P

ap
er

 A
)

eSTRIDE
(Paper C)

STRIDE vs.
STRIDE

(Paper B)

eSTRIDE vs.
STRIDE

(Paper D)

Structural compliance to
DFD

(Paper H)

Security compliance to
SecDFD
(Paper I)

11/11/20 Chalmers 11

Flaws in Flows
(Paper E)

Inspection Rules
(Paper F)

Automation of
Inspection Rules

(Paper G)

Figure 1.1: Research Tracks

based analysis of source code representations (e.g., the abstract syntax tree). For
instance, Velasco and Aponte [74] recently introduced an approach for creating
fine-grained traceability links between program statements (incl. conditionals,
assignments, loops, etc.) and critical requirements to ease compliance checking
(dictated by regulatory bodies, i.e., HIPAA [75]). First, the requirements and
source code files undergo a text processing phase (incl. tokenization, tagging,
stop word removal and the like). Next, the authors leverage an information
retrieval (IR) technique called Latent Semantic Indexing to identify the most
relevant source files for each requirement. Finally, to obtain a ranked list of
relevant program slices, predefined criteria (respecting a particular requirement)
is used to perform program slicing. Feature location approaches [76] leverage
IR techniques in a similar way to determine locations in the source code where
a particular functionality is realized. However, most traceability link recovery
and feature location techniques rely on analyzing textual similarity. They fail
to take into account structural properties of the early software design artifacts
(e.g., DFDs), which are essential to capture cross-cutting concerns (such as
security) in the source code.

To fill these gaps, we study how to automate the discovery of structural
compliance (using both textual similarity and structural heuristic rules) of the
implementation to DFDs in Paper H. Our approach does not rely on code
annotations and can be applied to existing (Java) projects without any code
generation. In addition, we intentionally keep the user in the loop to benefit
from domain knowledge and enable a meaningful analysis. In Paper I, we
extend the approach with automated security compliance checks of data flow
properties by leveraging static code analysis techniques.

1.2 Research Focus
This thesis contributes to solving three problems that were identified in Paper A
by means of a systematic literature review (SLR). Accordingly, Figure 1.1 shows
the contributions organized into three research tracks. The thesis findings

1.2. RESEARCH FOCUS 9

generally progress from left-to-right in this figure. But, some findings of the first
research track have steered the work later-on and some research was conducted
concurrently. For instance, the SLR was conducted concurrently with Papers
B and C. The rest of the appended publications build on top of the previous.

1.2.1 High manual effort
The first research track was oriented towards an industrial collaboration with
the automotive industry. With respect to the current state of practice, lack
of security expertise is a crucial matter and increasing the efficiency of threat
analysis could free valuable resources. For this reason, we studied how to reduce
the time spent on analyzing threats without sacrificing the quality of outcomes.
Namely, we wondered whether it is acceptable (given the time constraints) to
start from an analysis of assets and their risk-related importance and only
analyze important threats. Clearly, there is a trade-off between systematicity
and focus on important threats. In Paper C, we explore this trade-off and
provide a risk-first solution, named eSTRIDE.

In parallel to this study, we worked on building a deeper understanding
on how the analysis procedure affects the performance of security analysis.
Specifically, we were interested to understand how the procedure of visiting the
architecture facilitates designers in identifying threats. To this aim, we looked
into the scope of analysis, i.e., the number of elements analyzed at once by
the human expert. On the one hand, there exist such techniques that suggest
practitioners to find threats to architectural components in isolation (e.g.,
STRIDE-per-element). Further down the line, some techniques suggest finding
threats to a set of components (e.g., STRIDE-per-interaction). Finally, we
propose an end-to-end analysis techniques that suggest finding threats to a chain
of components (i.e., eSTRIDE). We hypothesized that manual threat analysis
performs better when the scope of analysis increases and leads to a more efficient
discovery of the most important threats. We conduct an empirical comparison
of two existing techniques to test this hypothesis (Paper B). The findings
of this study provided inspiration for the definition of an improved manual
analysis procedure (eSTRIDE). In Paper D, we continue on this path and
conduct two case studies in two organizations, based in two different countries.
First, we empirically compare the performance and execution of eSTRIDE to
STRIDE-per-element. Second, we question the effect of security expertise on the
quality of outcomes. To this end, we empirically compare the performance (and
execution) of the less security savvy teams to the teams with security expertise.

The goal of this track is to introduce an efficient manual approach for
finding important security threats by enlarging the analysis scope. Collectively,
the research conducted in this track (Papers B, C, and D) aims to answer the
following research question.
RQ1. What are the effects of broadening the analysis scope on the quality of
analysis outcomes?
To answer this research question, we faced three challenges.
RQ1.1. What changes are required in the design model to facilitate a threat

analysis focusing on important threats? (Paper C)
RQ1.2. What changes are required for a model-based threat analysis procedure

to focus on important threats? (Paper C)

10 CHAPTER 1. INTRODUCTION

RQ1.3. What is the difference (in terms of performance and execution) between
a risk-first and risk-last threat analysis technique? (Paper D)

RQ1.1. Enlarging the analysis scope introduces a challenge for the human
expert as a higher cognitive load may harm the quality of analysis outcomes.
At the same time, identifying locations in the architecture where important
security threats may exist (before actually identifying the said threats), requires
the model to be extended with security risk information. Thus, striking the
right abstraction (and level of detail) of the model is a crucial step in developing
a technique focused on finding important security threats.

RQ1.2. The model extensions provide more security-relevant information to
the human expert. However, the extensions alone do not help the analyst during
the discovery of security threats. Hence, the analysis procedure needs to be
modified. First, the procedure of striving towards systematicity and considering
risk at the end did not seem appropriate anymore. Rather, focusing the analysis
towards high-priority threats requires leveraging the risk information during
the analysis. Second, the strategy of visiting the diagram per element (or
interaction) does not take advantage of the model extensions. Accordingly,
the second challenge was to reduce the manual effort as much as possible by
introducing short-cuts during the analysis.

RQ1.3. Finally, extending the analysis scope and introducing short-cuts
during the analysis must not harm the overall technique performance or the
quality of the analysis outcomes. The introduced threat analysis technique
(eSTRIDE) considers risk information at the very beginning of the analysis.
Therefore, it is a risk-first technique. In comparison, the STRIDE-per-element
suggests to prioritize threats based on risk at the end, and is thus a risk-last
approach. The final challenge in this track was to gather empirical evidence
about sacrificing systematicity for the discovery of important threats.

1.2.2 Low recall
The findings of the first research track have influenced our research agenda
in the second research track. The empirical evidence gathered is witness to
the limits of tweaking the efficiency of manual threat analysis. For instance,
analysis paralysis (i.e., discussing one threat in too much detail) slows the
analysis down. Further, sub-optimal team dynamics as well as terminology
disagreements may have a negative impact on the quality of outcomes. In
addition, many real security threats are overlooked, may it be due to time
pressure, lack of information, or simply human error. To overcome such
challenges automation of the analysis is an important step.

Architectural security threats exist due to the presence of security design
flaws. Therefore, the goal of this research track is to study how security design
flaws are inspected, and how they can be detected automatically. The results
that emerged in this research track (Papers E, F, and G) collectively aim to
answer the second research question.
RQ2. To what extent can security design flaws be automatically detected in
DFD-like models?
Concretely, we faced two challenges in our efforts to answer this question.
RQ2.1. What model extensions support an automated security design flaw

detection? (Papers E, F)

1.2. RESEARCH FOCUS 11

RQ2.2. What performance can be achieved by an automated technique for
security design flaw detection? (Paper G)

RQ2.1. The informal notation of the DFD makes automation difficult.
Therefore, we first study the level of formalism that is required in the DFD
to automate the detection of confidentiality-related design flaws in Paper E.
Formal reasoning about confidentiality (and integrity) is well understood in the
area of language-based information flow security [77]. We lean on the theory
of information flow analysis, an area of research whose origins date back to
the late 70s [78]. To avoid overloading the analysts, we intentionally extend
the DFD with light-weight security semantics. Achieving this, together with a
formally-based security analysis of the DFD was challenging.

The light-weight extension proposed in Paper E does not support reasoning
about other security properties (e.g., authentication). To this aim, we compile
a catalog of security design flaws and their inspection rules (introduced in
Paper F). We selected five security design flaws from the catalog to study their
automated detection. Our next challenge was the design of a sufficient model
extension to capture the concepts required to reason about the presence of
flaws in the models.

RQ2.2. The second challenge is to understand what levels of performance
can be achieved by automating the detection of security design flaws. To this
aim, we first translate the inspection rules of five security design flaws into graph
query patterns, which we use for the automated detection. We conduct an em-
pirical study comparing the outcomes of the automated technique to a manual
inspection (ground truth) performed by human experts. The main challenge we
faced was obtaining a data set of publicly available DFD models. In addition,
to enable an empirical comparison, we had to conduct an assessment of the col-
lected data set of DFD models with human experts under controlled conditions.

1.2.3 Disconnect between models and code
After performing a manual (or automated) security analysis of design models,
there is yet a question that begs for an answer: How do the outcomes of
such analyses relate to the implemented program? Much effort is spent on
planning the intended security on the level of the design. But, without an
explicit relation to the implementation, this effort is not leveraged to its full
potential. In addition, model-level analyses do not provide a realistic picture of
the implemented security, which diminishes the usefulness of models later-on
the in the development life-cycle. The value of the model-level analysis could
be increased, if such an explicit relation existed.

The goal of this research track is to study the relation between design
and implementation, particularly for what concerns the security compliance.
Collectively, the research conducted in this track (Papers H and I) aims to
answer the third research question.
RQ3. What security code analysis techniques can be leveraged to discover the
security compliance of the implemented system to SecDFD models?
We faced three problems in our effort to automate security compliance checks.
RQ3.1. What relation between the DFD model and an intermediate code

representation supports automated security compliance checks? (Paper H)
RQ3.2. What security code analysis techniques can be leveraged to discover

12 CHAPTER 1. INTRODUCTION

security compliance to the node contracts specified in the SecDFD?
(Paper I)

RQ3.3. What information from the SecDFD complements existing static code
analysis tools? (Paper I)

RQ3.1. First, to enable automated compliance checks, we establish an
explicit mapping of high-level elements (e.g., a DFD process) to implemented
constructs (e.g., implementation of a method). To this aim, we define rules for
mapping element types between two representations. The first representation is
the high-level design model (i.e., the SecDFD introduced in Paper E). The sec-
ond representation is an automatically extracted model of the implementation
(i.e., the program model [13]). Finding the appropriate corresponding element
types between these two abstractions was our first challenge. In addition,
understanding what heuristic rules can help in the discovery of corresponding
elements was not trivial.

RQ3.2. The second challenge we faced was understanding what code analy-
sis techniques can be leveraged to detect security compliance, given the explicit
mapping between the design model (i.e., SecDFD) and its implementation.
The SecDFD allows specifying contracts for the node elements, which precisely
define how the confidentiality of an incoming asset(s) changes on the outgoing
asset(s). For instance, the encrypt contract bound to one incoming asset and one
outgoing asset produces a public (not confidential) output. We were interested
to leverage the previously proposed mapping (Paper H) and static code analysis
techniques to verify whether the node contracts are implemented as intended.

RQ3.3. Existing data flow analyzers require the user to correctly identify
sources and sinks of confidential information. Though some sources and sinks
can be extracted from library APIs (e.g., like in [79]), finding project-specific
sources and correct sinks still remains a challenge. Besides developing the checks
for each node contract in isolation, we were interested to statically analyze
security of the entire program. Concretely, we wondered if the outcomes of an
analysis on the model-level (e.g., allowing some data to flow into a sink) can be
used to complement existing static code analysis tools. We hypothesize that
our mapping between the intended design and its implementation may be used
to point to locations in the code where secret information is first created, and
locations where it is allowed flow. The challenge was to extract this information
from the SecDFD in a way that can be useful to existing code analysis tools.

1.3 Paper Summaries
This section includes a summary of the appended papers. We describe our
research goals, adopted methods, and main contributions. The reader may
refer to the individual papers for a detailed discussion of the related work.

1.3.1 SLR on Threat Analysis (Paper A)
The number of existing threat analysis techniques makes it difficult for prac-
titioners to make informed decisions about selecting the appropriate method
for adoption in their organizations. Further, the existing literature on system-
atizing the knowledge about threat analysis is limited and does not provide a
complete list of existing techniques. The primary goal of Paper A is to catalog

1.3. PAPER SUMMARIES 13

and characterize the existing threat analysis techniques. The second goal is to
provide guidelines for practitioners in selecting techniques for adoption, and to
identify knowledge gaps for future research directions. In this study we compare
26 identified methodologies for what concerns their applicability, characteristics
of the required input for analysis, characteristics of analysis procedure, charac-
teristics of analysis outcomes, ease of adoption, and their validation. The study
was conducted by strictly following the guidelines by Kitchenham et al. [80] and
included an elaborate strategy, including backwards snowballing [81] for search-
ing the literature and extracting the data. In addition, we discuss the obstacles
for adopting the identified techniques to current trends in software engineering
(i.e., Development and Operations, Agile development) and their generalization
across domains. Finally, the study provides recommendations to practitioners
for technique adoption depending on the amount of planned resource investment.

Contributions. The main findings of the SLR are: (i) Existing threat
analysis techniques lack in quality assurance of outcomes, (ii) the use of
validation by illustration is predominant, (iii) the tools presented in the primary
studies lack maturity and are not always available, (iv) there is a lack of
correctness and completeness guarantees for analysis outcomes. The SLR was
performed as part of an in-depth study of the state-of-the-art, hence it does
not contribute to any of the research questions listed in Section 1.2.

1.3.2 STRIDE-per-el vs STRIDE-per-inter (Paper B)
Among other things, threat analysis techniques may differ in the scope of
analysis. We were interested to study the effects of a different analysis scope
on the technique performance. To this aim, Paper B rigorously compares two
existing techniques with different scopes, namely STRIDE-per-element and
STRIDE-per-interaction [9]. In particular, this study measures the respective
techniques’ performance in terms of their productivity, precision, and recall.
The study was conducted in the context of in-vitro experiments with master
students. We adopted a standard design for a comparative study [82] of one
independent variable with two values, namely, Element and Interaction.
The participants were split into two treatment groups, the Element and
Interaction treatment group. They were further assigned to teams. The
teams were instructed to (i) create a DFD and (ii) perform a threat analysis
of a familiar system using the respective technique in a fixed time frame and
report the analysis results. We collected the measure of effort (in minutes)
spent by each team on both sub-tasks (DFD creation and threat analysis). The
final reports were compared to a ground truth analysis to collect the measure
of true positives (TP), false positives (FP) and false negatives (FN). On that
basis, we collected evidence about statistically significant differences (SSD)
between (i) the average productivity (number of TP per hour) of treatments,
(ii) the average precision (TP/(TP + FP)) of treatments, and (iii) the average
recall (TP/(TP + FN)) of treatments. Beyond that, the study controlled for
any possible discrepancies between the populations of the treatment groups
(i.e., with an obligatory entry and exit questionnaire) and gathered subjective
feedback on the usability of the techniques.

Contributions. Paper B contributes towards answering RQ1. The main
contribution of this paper is the gathered empirical evidence about the per-

14 CHAPTER 1. INTRODUCTION

formance of two threat analysis techniques (with a different analysis scope) in
the academic setting. We observed slightly better results for the STRIDE-per-
element technique (SSD between the average recall of treatments, Element :
62% Interaction : 49%). We also observed a slightly better average pro-
ductivity (no SSD, Element : 4.35 TP/hour Interaction : 3.27 TP/hour).
One possible explanation for the difference in treatment performance is that
STRIDE-per-interaction is more difficult to perform for novice analysts [9]
(such as our participants). STRIDE-per-interaction requires the consideration
of pair-wise interactions of elements, thus increasing the cognitive load for the
analyst [83]. Accordingly, we observed that on average the Interaction teams
produced larger DFDs, indicating that interactions lead to participants con-
structing a more complex problem space. The increased cognitive load and lack
of domain expertise might have affected the performance of the Interaction
teams. This study concludes that there is no significant difference (in terms of
performance) between the two treatments with a slightly different analysis scope.

1.3.3 Towards Security Threats That Matter (Paper C)
This paper is motivated by the need to increase efficiency of threat analysis
techniques in the automotive industry. To this aim, we enlarge the analysis
scope and improve the analysis procedure to focus on important assets. The
proposal was inspired by STRIDE and comes as a result of numerous workshop
sessions with our industrial partners that further highlighted the needs and
shortcomings of existing approaches. As a collection of lessons learned, the
first author synthesized the approach and validated it with an illustration.

Contributions. This paper contributes to answering RQ1. The main con-
tribution of this paper is a novel risk-first threat analysis technique (eSTRIDE)
with an enlarged analysis scope. We propose to prioritize threats before they are
analyzed based on assets and their priorities. This requires practitioners to en-
rich the architectural model (i.e., build an extended DFD or eDFD) with assets,
their sources, targets, security concerns and priorities, domain assumptions,
communication channels, and existing security solutions. The DFD extensions
are made to end-to-end user scenarios around highly prioritized assets. During
the analysis procedure, such scenarios become the scope of the analysis. Finally,
the approach proposes initial guidelines for handling threat explosion by reduc-
ing the problem domain before and introducing short-cuts during the analysis.
The initial illustration suggests a reduced number of low-priority threats but
does not provide sufficient evidence for the potential benefits of the approach.

1.3.4 STRIDE-per-el vs eSTRIDE (Paper D)
This paper is motivated by the lack of empirical evidence about sacrificing
systematicity in the procedure of threat analysis for the discovery of high-
priority threats. To this end, we conducted two comparative case studies with
two different automotive organizations (Org A and Org B). The purpose of
this study is to gather empirical evidence about the similarities and differences
between a risk-last (STRIDE) and a risk-first (eSTRIDE, introduced in Paper C)
threat analysis technique in the industrial setting. The case studies were
conducted with (in total) 15 industrial practitioners. The participants of the

1.3. PAPER SUMMARIES 15

first organization (Org A) were industrial experts, who have been trained in
security or self-identify as security experts. On the other hand, the participants
of the second organization (Org B) had a deeper knowledge of the system under
analysis but self-identify as security novices. This enabled further observations
about the effect of security expertise on the overall team performance. Within
each organization, we observed and compared two teams analyzing the same
system using one of the prescribed techniques (Stride and eStride assigned
treatment). The participants were tasked to a) build a DFD (or an eDFD) of
the system under analysis and b) analyze the diagram using the procedural
guidelines of the prescribed technique. On the first day the teams were given
a training session including hands-on exercises of the prescribed technique.
On the second and third day the teams worked on their tasks. We measured
differences in the quality of analysis outcomes by assessing handed-in reports
of the identified threats. Differences in technique execution were measured
by analyzing recordings (only allowed in Org A), time-keeping of participant
activities, and structured note-taking.

Contributions. Paper D contributes to answering RQ1. The main contri-
bution of this paper is the gathered empirical evidence about the performance
of two threat analysis techniques (with a different analysis scope) in the indus-
trial setting. We recorded similar levels of productivity between the compared
techniques. Possibly, the eStride teams spent more time to extend the di-
agram, while the Stride teams spent more time to prioritize the threats at
the end (this activity is skipped in eStride). Though no evidence suggests
an early discovery of high-priority threats, the eStride teams found twice
as many high-priority threats (compared to the Stride teams). Only a part
of the discovered threats were common threats, therefore we observed that
eStride tends to result in a more complete account of high-priority threats.
As expected, on the first day all the teams focused on building the diagram,
while on the second day they were analyzing the diagram. In Org A, we also
observed that domain assumptions played an important role in the analysis
(e.g., they used assumptions to justify a threat existence). Finally, we studied
the effect of security expertise on the technique outcomes and execution. First,
compared to Org A (more security expertise), both teams in Org B made
mistakes. However, the achieved precision of the less security expert teams
is still quite high (80% and 70%). In addition, the teams in Org B were
more productive (about 6 correct threats per hour vs about 3). Clearly, higher
productivity does not imply identification of more high-priority threats. In fact,
our results show that more experienced analysts identify a bigger percentage
of high-priority threats (regardless of the technique used). Regarding the
differences in technique execution, we mention that the less experienced teams
(Org B) seldom discussed threat feasibility.

1.3.5 Flaws in Flows (Paper E)
Paper E is motivated by the low recall of existing techniques using informal
design notations, such as STRIDE [10]. On the one hand, literature describes
formalizations of DFDs [84] which often result in a complicated language
hindering their usability. On the other hand, several studies propose threat
analysis automation (e.g., by means of pattern matching [44, 45]) with no

16 CHAPTER 1. INTRODUCTION

correctness or completeness guarantees of analysis outcomes. Inspired by
language-based information flow security [85,86], we propose a formal approach
to analyze security information flow policies at the level of the design model.

Contributions. This paper contributes towards answering RQ2. The
main contributions are two-fold: (i) a light-weight extension of the modeling
capabilities of DFDs, and (ii) a tool-supported, formally-based flow analysis
technique. The extension of the DFD notation requires the designer to provide
the intended security policy for system assets. In addition, the designer is
required to specify an abstract input-output security contract for the computa-
tional nodes (i.e., DFD processes). The designer also specifies a global security
policy for all system assets, based on which the design flaws are identified. The
additional information mentioned above is leveraged in the analysis procedure.
The second contribution of this work is a formally-based flow analysis technique
that propagates security labels across the design model. The approach was
implemented and packaged as a publicly available plug-in for Eclipse. We
validated the approach using 4 open source applications.

1.3.6 Detection of Security Design Flaws (Papers F & G)
Beyond low-level vulnerability databases (e.g., CVE [87], CWE [88], CAPEC [89])
there is little systematized knowledge on security design flaws and how to find
them by inspecting architectural models. In Paper F, we present a catalog of
security design flaws and evaluate their manual inspection with master and
doctoral students. The catalog contains a list of 19 design flaws related to is-
sues with authentication, access control, authorization, availability of resources,
integrity and confidentiality of data. Each catalog entry consists of (i) the name
of the design flaw, (ii) a description, and (iii) a series of closed questions that
serve as rules for manual inspection. Existing literature already contributes
towards automating various security design analyses [43,44,57,65,90–92], yet
there is a lack of automated reasoning for detecting security design flaws along-
side existing system defenses and security assumptions about assets. Therefore,
we select five security design flaws from the catalog (introduced in Paper F)
and attempt to automate their detection. To that end, Paper G presents
model query patterns which are executed over DFD models enriched with data
types and security solutions. The query patterns were developed by translating
the manual inspection rules from the catalog to model element types and
their relations. Further, we conducted an empirical study (under controlled
conditions) with 13 academic researchers on-site two University campuses to
obtain a data set of 26 enriched DFD models. The data set was submitted to
two expert assessors for a manual application of the inspection rules of the five
flaws. We leverage this data set of models (incl. instances of the five flaws) to
evaluate the performance of the automated detection technique.

Contributions. This work contributes towards answering RQ2. The
main contributions of these papers are three-fold: (i) a data set of 26 security
enriched models and their flaws, (ii) an automated detection technique of
five security design flaws, and (iii) an empirical evaluation of the automated
detection using the data set. On average, a model in our data set contains
about 17 data flow elements, 5 processes, 3 data stores, 2 external entities, and
8 security solutions. The experts found (on average) about 16 flaw instances

1.3. PAPER SUMMARIES 17

on a single model. In our data set, the model size seems to correlate with
the average number of identified flaws. The model extensions are leveraged
in the automated detection, which was implemented as an Eclipse plug-in.
First, the data types are used to identify locations in the model where a flaw
could be present. At those location, the automated detection checks for the
presence of appropriate security solutions. We compared the expert reports of
the identified flaws to the flaws detected by the query patterns. Though the
precision of the automated technique is too low to replace expert analyses, it
could be used to present a list of issues for the analyst to sieve through.

1.3.7 Structural Compliance (Paper H)
This paper is motivated by the difficulty of establishing and maintaining a
software implementation compliant to the intended design. The disconnect
between design-level models and their implementation may potentially result
in architectural erosion [93]. To address this issue, we present a user-in-the-
loop approach for establishing an explicit mapping between DFD models
and implemented constructs (concretely, in Java). Our goal is to enable an
automated discovery of compliance with minimal user interaction. The proposed
approach relies on a set of four correspondence rules between the DFD element
types (introduced in Paper E) and the program model element types [13]. These
rules are used in a heuristic search for mapping suggestions. The approach
includes a user interface and is packaged as a publicly available Eclipse Plug-in.
Finally, we experimentally evaluate the precision and recall of the suggested
mappings on five open source projects.

Contributions. This paper contributes towards answering RQ3. The
main contributions of this paper are two-fold: (i) an automated technique
for suggesting mappings between DFDs and program models, and (ii) an
implementation of the approach as a publicly available Eclipse plug-in, evaluated
on five open source Java projects. First, the approach takes as input a completed
DFD model. Second, the user needs to extract a program model from the
implementation (which is done automatically) [13]. Finally, she can map the
DFD to the desired Java project (in the Eclipse workspace). The user can
accept, reject, or tolerate the suggested mappings, and execute a new search
iteration until she deems the DFD is mapped. She can also manually map source
code elements (provided they respect the correspondence rules). Information
and error markers are used to provide feedback to the user about the state of
compliance. We measured the correctness (in terms of precision and recall) of
the suggested mappings and the user impact on the correctness of mappings
for each iteration.

1.3.8 Security Compliance (Paper I)
This paper is motivated by the need for automating the verification of imple-
mented programs with respect to the intended security properties in the design.
In addition, static analysis tools may report violations which are afterwards
labeled by human experts as false alarms [94]. All reported violations have
to be manually sieved through, and, more importantly, the actual violations
must be distinguished from the false alarms, which is hard for developers with

18 CHAPTER 1. INTRODUCTION

less security expertise [95]. Our goal is to leverage the previously proposed
technique (introduced in Paper H) to statically analyze the implemented secu-
rity properties against the mapped design model. To this end, we propose to
extend the approach in Paper H with automated security compliance checks.

Contributions. Paper I contributes towards answering RQ3. This work
extends the approach in Paper H with two key contributions: (i) two types
of static checks to verify security properties (i.e., SecDFD contracts) in the
implementation, and (ii) an automated extraction of project-specific sources
and sinks of confidential information from the design, which are used to reduce
the number of false alarms raised by a state-of-the-art data flow analyzer. In
Paper I, we assume an existing SecDFD and its correct mapping (following the
steps in Paper H). To verify security properties of the design, we introduce
two types of static checks: rule-based checks for the encrypt and decrypt
(SecDFD) contracts, and local data flow checks for the forward and join
contracts. The second contribution is the extraction of project-specific sources
and sinks of confidential information from the design and their localization in
the code. For each SecDFD asset, we execute an existing data flow analyzer [96]
initialized with the extracted sources and sinks. We experimentally evaluate
both contributions with two open source Java projects.

1.4 Discussion
This section summarizes the answers to the main research questions of this thesis.
First, we discuss the main findings of the study of the state-of-the-art (Paper A).

Our assessments in Paper A show that existing threat analysis techniques
are mainly applicable on the level of requirements, architecture and design.
This is not very surprising considering that one of the main purposes for
performing threat analysis is to elicit security requirements. Further, most
of the studied techniques use architectural design models and requirements
(usually in textual form) as inputs to the analysis procedure, which is in line
with the first finding. Interestingly, the precision of most threat analysis
procedures is based on templates and examples, such as textual descriptions of
example threats. About half of the studied techniques consider risk to prioritize
the analysis outcomes. The analysis outcomes of the studied techniques in turn
are mostly threats. Yet, half of the techniques also produce security mitigations
or requirements. Finally, we find that not many of the studied techniques have
a way to assure the quality of analysis outcomes.

Paper A also investigated the ease of adoption for the studied techniques.
About half of the studied techniques do not provide any tool support. The
target audience for most of the studied techniques are security experts and
security trained engineers. We contemplate which characteristics are important
for adopting the techniques in practice and provide the following guidelines for
technique selection:
(a) If the organization plans to make small investments into adopting a threat

analysis technique and security is not prioritized by management, we recom-
mend selecting a technique that can be used without further modifications.
Important criteria: Tool availability and maturity, sufficient documentation,
low target audience and a light-weight analysis procedure.

1.4. DISCUSSION 19

Element
(novice)

Interaction
(novice)

Scenario
(novice)

El/Scen
(expert)

P
er

fo
rm

an
ce

 a
nd

 th
re

at
s

Technique and security expertise

Element
(novice)

Interaction
(novice)

Scenario
(novice)

El/Scen
(expert)

P
er

fo
rm

an
ce

 a
nd

 th
re

at
s

Technique and security expertise

Paper DPaper B
Hypothesis Reality

Productivity Precision Percentage of high-priority threats

Figure 1.2: Illustration of our hypothesis about technique performance in
relation to the cognitive load required for brainstorming threats and security
expertise (left) and the reality for three specific techniques (right)

(b) If the organization plans to make small investments into adopting a threat
analysis technique and security is prioritized by management, we recom-
mend selecting a technique that is systematic. Important criteria: System-
atic analysis procedure, expert-based and preferably semi-automated.

(c) If the organization plans to make large investments into adopting a threat
analysis technique, we recommend developing an “in-house” adaption of a
promising technique. Important criteria: Systematic analysis procedure,
potential for improvement (e.g., technology improvement).

RQ1. What are the effects of broadening the analysis scope on the
quality of analysis outcomes?

Among other, Papers B and D investigate the effects of enlarging the analysis
scope on technique performance. Figure 1.2 illustrates our hypothesis and
observed reality about the linear dependency between technique performance
and the analysis scope. In addition, it shows our expectations (left) and
observations (right) about performance differences between less experienced
groups in security and groups with security experts.

Empirical evidence shows that the productivity, precision, and number of
high-priority threats found are not significantly different for the per-element
and per-interaction variants of STRIDE. Thus, in the context of the controlled
experiments reported in Paper B, the analysis scope does not have a significant
effect on the overall technique performance. Further, in the context of the case
studies reported in Paper D, we find that enlarging the analysis scope to a chain
of elements (like in eSTRIDE) does not affect the overall technique performance
either, therefore similar levels of outcomes quality can be assumed. However,
the eSTRIDE technique leads to finding twice as many high-priority threats
(compared to STRIDE-per-element). Contrary to our intuition, the productivity
of expert analysts is lower (about 3 TP per hour) compared to novice teams
(about 6 TP per hour). However, our results show that more experienced
analysts identify a bigger percentage of high-priority threats (regardless of the
technique used). In addition, the precision of the expert groups is still higher,

20 CHAPTER 1. INTRODUCTION

compared to novice groups.

RQ1.1. What changes are required in the design model to facilitate
a threat analysis focusing on important threats?

Reasoning about risk early-on requires a good understanding of the assets and
their whereabouts in the system. During the asset analysis, the assets first need
to be identified in the model (incl. asset source, target(s)). The importance
of assets can only be deduced by discussing their security objectives (i.e.,
confidentiality, integrity, availability, accountability) and the priorities of those
(high, medium, low). The annotated assets are required in the model to indicate
where the model should be further extended. By focusing on highly prioritized
assets, the analysis is performed on parts of the architecture. This is how the
problem space is reduced before the analysis begins. Domain assumptions,
communication channels, and existing security solutions are notation extensions
that are used to make reductions during the analysis.

RQ1.2. What changes are required for a model-based threat analysis
procedure to focus on important threats?

In Paper C, we provide guidelines for handling threat explosion before (see
RQ1.1) and during the analysis. To reduce the effort during threat analysis, we
propose a slight departure from the analysis procedure suggested by STRIDE.
First, eSTRIDE analysis is performed using eDFDs. Second, threats are only
elicited for scenarios containing high-priority assets. Third, the scope of the
analysis is an end-to-end scenario of an asset with important security objectives.
This means that a chain of elements is considered during threat elicitation,
rather than single elements (or their interactions). Further, only threats that
directly threaten a highly prioritized security objective are considered. For
instance, tampering threats compromise the integrity objective. Finally, only
threats that are possible despite annotated domain assumptions and existing
security solutions are considered.

RQ1.3. What is the difference (in terms of performance and execu-
tion) between a risk-first and risk-last threat analysis technique?

In Paper D, we observe similar productivity levels across the two treatments
(Stride vs eStride). One possible explanation is that, instead of spending
time on prioritizing threats at the end (in Stride), the analysts of the eStride
teams had to spend time on extending the diagram. This is reflected in the
productivity of eStride teams. However, in reality these sessions can span
over weeks, therefore the additional security information in the model could
help to reboot the discussions after more time has passed (though this was
not measured in Paper D). We also observe that many high-priority threats
are found around trust boundaries. Trust boundaries illustrate locations in
the diagram where entities with different privileges interact [9]. It would be
interesting to observe the timeliness of discovering high-priority threats if these
boundaries are analyzed first. In addition, we find that discussing feasibility of
threats is time-consuming, but is required for a precise analysis. Indeed, the
less experienced teams seldom discussed threat feasibility in detail, were more

1.4. DISCUSSION 21

productive, but performed a less precise analysis. Regardless of the security
expertise, our teams were able to quickly learn and effectively apply both
techniques. Therefore, we postulate that security expertise may be traded for
a higher paced and less precise analysis under resource-constrained conditions.

The main findings regarding RQ1 are summarized in what follows.
RQ1. Summary of main findings

� The domain and security knowledge of the team has an impact on
the quality of outcomes and needs to be present in the architectural
model before the analysis begins. (Paper C)

� The complexity of the architectural model needs to be managed by
making model abstractions wherever possible while enrichments
are made only around assets with highest priorities. (Paper C)

� During the analysis, only threats to scenarios with high-priority
assets should be elicited. In addition, only threats (that exist
despite domain assumptions and security solutions) to high-priority
objectives of assets should be considered. (Paper C)

� Similar performance (in terms of productivity and precision) is
measured for the risk-first and risk-last threat analysis technique.
(Paper D)

� Compared to a risk-last technique, the risk-first technique tends
to discover twice as many high-priority threats. (Paper D)

� In the industrial setting, security expertise may be traded for a
faster-paced and less precise threat analysis. (Paper D)

RQ2. To what extent can security design flaws be automatically
detected in DFD-like models?

We propose two extensions of the regular DFD notation to automate the
detection of the security design flaws. The first is a semantically enriched
specification language (SecDFD) coupled with a formally-grounded model

0 20 40 60 80 100

Average

Flaw 13: Insecure data storage

Flaw 6: Insuff. crypto key management

Flaw 15: Insecure data exposure

Flaw 2: Authentication bypass

Flaw 18: Insufficient auditing

Precision and recall of the query patterns

Recall Precision

Figure 1.3: Precision and recall of the automated detection of five security
design flaws (Paper G)

22 CHAPTER 1. INTRODUCTION

analysis (Paper E). Preliminary evaluation on four open source applications
suggests that automating the detection of data leaks between confidential
sources and public sinks can be automated without false positives. In the second
proposal, we extend the notation with data types and leverage an existing
extension to model security solutions [42]. Figure 1.3 shows the average precision
and recall of the developed query patterns. Our key take-away is that it is very
hard to attain good performance when automating the inspection rules of the
catalog, though the higher recall (compared to precision) is still encouraging.

RQ2.1. What model extensions support an automated security de-
sign flaw detection?

In order to reason about confidentiality design flaws, we introduce the Security
Data Flow Diagram (in short, SecDFD) specification language. First, the
regular DFD notation is extended with confidentiality labels of assets, their
sources and sinks. In addition, the notation is extended with attacker zones.
Attacker zones are sets of elements where the attacker may be able to observe
assets. The above extensions enable the definition of a global security policy,
i.e., the model is considered secure if and only if there is no sensitive asset
flowing into observable model locations. Second, the security properties of
assets are subject to change in the diagram. To capture this, one must consider
how each process affects the confidentiality of a traveling asset. To this aim, the
regular DFD notation is enriched with a formal label model with propagation
functions (or security contracts). The label model defines the semantics of
four different security contracts (i.e., forward, join, encrypt, and decrypt),
depending on the process (or node) type. Given a SecDFD model, we are able
to propagate the confidentiality labels by visiting each node (in a depth-first
manner) and spot locations where data may leak.

In Papers F and G, we study the detection of security design flaws concern-
ing various security properties. Compared to Paper E, our aim is to develop the
detection of several flaw types with less formal guarantees. The inspection rules
of five security design flaws (from the catalog introduced in Paper F) instruct
the analyst to identify sensitive information in the model, and to evaluate
the existence of security mechanisms. Therefore, the regular DFD notation
is extended with a data model, which enables representing different types of
sensitive data (such as key material, session token, encrypted data, etc.). In ad-
dition, our data model allows specifying data transformations (e.g., encryption
of a sensitive asset). To analyze security flaws in the context of existing system
defenses, we leverage an existing DFD modeling extension by Sion et al. [42].
The benefit of this extension is that the meta-model allows specifying cus-
tomized solutions and types of threats (e.g., spoofing) they mitigate. Instances
of data types and security solutions are bound to concrete DFD model elements.
These extensions enable finding weak spots with respect to existing defenses
and assets of value by querying the graph-like model for problematic patterns.

RQ2.2. What performance can be achieved by an automated tech-
nique for security design flaw detection?

Paper G empirically compares the outcomes of the developed technique for
automated flaw detection to a manual inspection (performed by human ex-

1.4. DISCUSSION 23

perts). The overall average precision of the automated technique is about
50% and the average recall is about 75% (see Figure 1.3). In the context of
our performance evaluation, the precision of our automated detection is not
good enough to replace manual expert analyses. Among other reasons, falsely
detected flaws have two origins: (i) over-approximated asset sensitivity levels,
and (ii) ambiguously modeled solutions. The expert assessors disregarded
incorrectly modeled sensitive assets (i.e., if the experts considered the asset not
sensitive, they did not report a flaw despite the incorrect model). Further, in
case of minor mistakes or ambiguities the experts took modeler intention into
account and did not report a flaw. In comparison, the automated detection
technique assumes that the model is correct, therefore in such situations the
flaws are still detected by the tool. The higher value of recall (compared to the
precision) is still encouraging, as the automated technique could generate a list
of issues for the expert to sieve through. The second take home message is that
some rules seem to be more promising than others for automation. For example,
the query patterns for design flaws 13 and 15 (design flaws only affecting the
confidentiality of assets) perform somewhat better.

Below we summarize the main findings for what concerns RQ2.
RQ2. Summary of main findings

� The design notation needs to be extended with node types to
specify the operations that the process elements perform over the
assets. (Paper E)

� The global security policy (i.e., the security condition in Paper E)
and the attacker model need to be defined to reason about analysis
completeness. (Paper E)

� The semantics of the node types need to be defined for a formally-
based analysis (e.g., security contracts of node types). (Paper E)

� Graph-based queries seem promising for automating the detection
of security design flaw inspection rules. (Papers F & G)

� It is hard to attain good performance (precision and recall) when
automating the rules for manually inspecting security design flaws.
(Paper G)

� Some security design flaws are more amenable to automation, and
the overall higher recall (compared to precision) of the automated
detection is still encouraging. (Paper G)

RQ3. What security code analysis techniques can be leveraged
to discover the security compliance of the implemented system to
SecDFD models?

Figure 1.4 shows the steps (from the user perspective) of the proposed ap-
proach for analyzing the security compliance between the intended design
and its implementation. First, to automate structural compliance checks, we
propose (Paper H) to establish a mapping between the high-level model and
the implementation. The user is intentionally kept in the loop to make the
compliance analysis meaningful. Our evaluation shows that the precision and
recall of the automated mappings suggestion progresses with every iteration,

24 CHAPTER 1. INTRODUCTION

Automated Mapping of
Elements

User Verification of
Mappings

Manual Mapping of
Elements

SecDFD Contract
Verification Data Flow Analysis

Paper I

Paper H

Figure 1.4: The steps of the iterative approach for analyzing structural compli-
ance (Paper H) and the security compliance analysis steps (Paper I)

demonstrating that (i) our heuristics are able to provide useful suggestions for
mappings, and (ii) the search for mappings takes user input (e.g., rejecting a
mapping or manually adding a mapping) into account. Given the technique
proposed in Paper H, static code analysis can be used to develop security
compliance checks. In particular, we present rule-based checks and local data
flow checks to verify whether the SecDFD security contracts are implemented
as intended. In addition, we show that the security information in the intended
(and mapped) design can be leveraged to improve code-level analysis tools by
reducing the number of reported false positives.

RQ3.1. What relation between the DFD model and an interme-
diate code representation supports automated security compliance
checks?

In Paper H, we present an iterative, user-in-the-loop approach for analyzing the
compliance between the intended design and implementation. The approach is
based on establishing mappings between a design-level model and the program
model (extracted from the implemented system in Java [13]). A set of four rules
is used to pin-down the corresponding elements between the two abstractions.
For instance, assets can be mapped to Java types (e.g., a class or a primitive
type). The rationale for this rule is that assets hold data, which (in the imple-
mentation) is typically transmitted using parameters and return values. The
only property of assets which rarely changes in the implementation is their type.

Our approach consists of three steps: the automated suggestion of mappings,
user mappings verification, and manual mappings creation (see Figure 1.4). To
find and present meaningful mappings to the user, our algorithm heuristically
assigns scores to all possible mappings. We implemented simple name matching
heuristics (using the Levenshtein distance) and structural heuristics. The
Levenshtein distance [97] is a measure of the minimal number of characters
which have to be removed, added or flipped to change one word into another.
For instance, the Levenshtein distance is used to score similarity between DFD
process names and method names. In one of the structural heuristics, we
score concrete method signatures by comparing incoming parameter types
and return types to incoming and outgoing DFD assets (of a process to be
mapped). In the second step, the user verifies suggested mappings via the
tool interface by accepting, rejecting, or tolerating them. Finally, the user
is able to manually add mappings. After the user has finished defining the

1.4. DISCUSSION 25

mappings, static checks can be used to determine structural compliance. All
accepted or manually added (but not rejected) mappings are allowed and are
thus convergences. Elements present in the code, but not specified in the DFD
represent a divergence. It is possible to display flows from process-mapped
members to other members which have not been mapped to this process. If the
target of such a flow has not been mapped to any process, there seems to be a
divergence. A divergence also arises if there is a flow between two processes in
the code that has not been specified on the DFD. Finally, if a DFD element
has not been mapped to any program model element, the user can discover an
absence of the specified functionality in the code.

Though the precision of the first round of suggested mappings is on average
about 50%, the last automated suggestion phase reaches an acceptable precision
of almost 90%. Similarly, the recall progresses with every iteration, which
suggests that the search for mappings takes user input (i.e., rejecting or manually
adding a mapping) into account.

RQ3.2. What security code analysis techniques can be leveraged to
discover security compliance to the node contracts specified in the
SecDFD?

In Paper I, we build on top of our work on structural compliance and study the
security compliance between the intended security and implemented security.
First, we introduce rule-based checks to verify that the implementation complies
with the indented cryptographic process contracts (i.e., the SecDFD encrypt
and decrypt contracts). In essence, for each SecDFD process with such a
contract, the check will inspect the mapped source code, and verify whether
there exists a call to at least one method with a method signature predefined
to be used for cryptographic operations. We also develop checks to verify that
the implementation complies with the intended data processing contracts (i.e.,
the SecDFD forward and join contracts). On the level of the program model,
implemented data flows can be traced trough incoming parameter and return
flows. For each SecDFD process with such a contract, we extract the relevant
implemented flows from the program model and compare them to the expected
flows (according to the SecDFD) to find a potential match. In addition, we
leverage the security information from the design model to initialize and execute
a state-of-the-art data flow analyzer for Java programs (i.e., FlowDroid [96]).

We consider the security compliance to converge when a planned security
contract (of the SecDFD process) is implemented at the correct location and
no leaks have been detected by the data flow analyzer. Instead, divergence is
identified if (i) there exists an implemented data flow which does not comply
with the security contracts (of the SecDFD process), or (ii) a leak has been
detected by the data flow analyzer. Finally, absence is identified when a
SecDFD contract is not implemented.

From our evaluation we conclude that the two developed types of security
compliance checks are relatively precise (average precision is 79.6% and 100%)
but may still overlook some implemented information flows (average recall is
65.5% and 94.5%) due to the large gap between the design and implementation.

26 CHAPTER 1. INTRODUCTION

RQ3.3. What information from the SecDFD complements existing
static code analysis tools?

We study how security information present in the design models can be used
to complement code-level analysis. First, we use our mappings to extract the
locations of confidential sources in the code. For instance, if the asset source is
an external entity and it is mapped to method definitions, their signatures are
collected as sources. We maintain the list of source method signatures for each
confidential asset (as they may differ across assets). Second, we use a baseline
list of sinks [79], which we modify before executing the analyzer. Similar to
source extraction, for each confidential asset we are able to identify sinks where
the asset is allowed to flow (by design). The allowed sinks are then removed from
the baseline list of sinks [79]. Finally, mapped method signatures of elements
contained in attacker zones (in the SecDFD) are added to the list of sinks.

The key takeaway from our evaluation is that using this approach we were
able to extract project-specific sources and allowed sinks of confidential data,
and reduce the number of false alarms (up to 62 %) raised by the state-of-the-art
data flow analyzer.

The main findings regarding RQ3 are summarized below.
RQ3. Summary of main findings

� A semi-automated, user-in-the-loop approach is promising for
establishing the mappings between a design model and its imple-
mentation. (Paper H)

� The performance of the heuristic search for mappings is less opti-
mal with no user input (i.e., in the first iteration), however both
precision and recall increase in the following iterations, reach-
ing fairly good levels (e.g., on average the precision of the final
automated phase is 87.2% and recall is 92%). (Paper H)

� Given an existing mapping, static analysis techniques can be used
to develop security compliance checks with a fairly good precision
(e.g., average precision for the two type of developed checks is
79.6% and 100%). (Paper I)

� Our approach is able to extract additional project-specific sources
and allowed sinks of confidential information in the code. (Paper I)

� The security information in the intended (and mapped) design
can be leveraged to help code-level analysis tools by reducing the
number of reported false positives. (Paper I)

1.5 Conclusion and Future Work
This thesis addresses three research problems, which were identified by conduct-
ing a systematic analysis of the state-of-the-art in threat analysis of software
systems. To address the issue of high manual effort, we propose a notation
extended with security-relevant information (eDFD) and an improved analysis
procedure (eSTRIDE). Second, we study how to raise the recall of model-based
security analysis techniques. To this aim, we introduce two approaches for

1.5. CONCLUSION AND FUTURE WORK 27

automatically detecting security design flaws: the SecDFD and a graph-based
automated detection. Finally, we suggest an approach for automating the
security compliance checks of the implemented programs with respect to the
intended design (represented with SecDFDs). We envision two future directions.

Extensions to privacy threat modeling. Fueled by changes in the legislation
(GDPR), privacy threat modeling has been receiving more attention in academia
and industry. But the gap between actual system behavior and the high-level
notions of the GDPR is immense. To overcome this issue, design-level analyses
could be adopted. Recent work by Antignac et al. [98] introduces a set
of privacy preserving transformations to statically identify and mitigate so
called “privacy hotspots” in DFDs. For instance, personal data flowing into
a third-party component (external entity) represents information disclosure,
and thus a potential breach of privacy. The privacy transformations modify
such interactions by inserting a pattern of new DFD elements to ensure that
the necessary steps will be taken at the time of implementation. But, GDPR
requires a more fine-grained tracking of data processing operations. We are
curious to study how our formally-based approach for detecting confidentiality
flaws (Paper E) can be extended with a privacy analysis. In particular, we are
eager to understand what data processing operations can be expressed for DFD
processes, and how these operations affect privacy properties of data classes.

Applications to the Internet of things (IoT) domain. In the domain of IoT,
security and privacy properties are hard to enforce due to hardware constraints
in the devices, and their access to private data. We are working on applying the
formally-based analysis of confidentiality (and integrity) flaws (Paper E) in the
context of IoT applications. In particular, we are interested to leverage static
code analysis techniques to verify implemented security properties. Analyzing
the source code statically (for every possible input) can be resource demanding.
Therefore, we are looking into the possibility to leverage the compositionality
property of the SecDFD specification language. First, we intend to extract
DFD-like graphs from existing IoT applications. Intuitively, static code analysis
could be performed over the implementation of local application nodes to extract
the implemented data flows. Next, the global security policy could be verified
by leveraging our label propagation model. To validate our approach, we are
studying a flow-based programming platform (i.e., NodeRED [99]) and the
accompanying repository of IoT applications.

28 CHAPTER 1. INTRODUCTION

1.5. CONCLUSION AND FUTURE WORK 29

30 CHAPTER 1. INTRODUCTION

Chapter 2

Paper A

This chapter is based on
Threat Analysis of Software Systems: A Systematic

Literature Review,

written by
K. Tuma, G. Calikli, and R. Scandariato,

published in
Journal of Systems and Software (2018), 2018.

31

Abstract
Architectural threat analysis has become an important cornerstone for organi-
zations concerned with developing secure software. Due to the large number
of existing techniques it is becoming more challenging for practitioners to
select an appropriate threat analysis technique. Therefore, we conducted a
systematic literature review (SLR) of the existing techniques for threat analysis.
In our study we compare 26 methodologies for what concerns their applicability,
characteristics of the required input for analysis, characteristics of analysis
procedure, characteristics of analysis outcomes and ease of adoption. We also
provide insight into the obstacles for adopting the existing approaches and
discuss the current state of their adoption in software engineering trends (e.g.
Agile, DevOps, etc.). As a summary of our findings we have observed that: the
analysis procedure is not precisely defined, there is a lack of quality assurance
of analysis outcomes and tool support and validation are limited.

32 CHAPTER 2. PAPER A

2.1 Introduction
After decades of research the issue of integrating security early-on in the
Software Development Life-cycle (SDL) has received more attention and is
becoming a corner stone in software development. In this respect, architectural
threat analysis plays a major role in holistically addressing security issues in
software development. Threat analysis includes activities which help to identify,
analyze and prioritize potential security and privacy threats to a software
system and the information it handles. A threat analysis technique consists
of a systematic analysis of the attacker’s profile, vis-a-vis the assets of value
to the organization. Such activities often take place in the design phase and
are repeated later on during the product life-cycle, if necessary. The main
purpose for performing threat analysis is to identify and mitigate potential
risks by means of eliciting or refining security requirements. Threat analysis
is particularly important, since many security vulnerabilities are caused due
to architectural design flaws. A failure to consider security early-on can be a
cause for so-called Architectural Technical Debt (ATD) [100]. Furthermore,
fixing such vulnerabilities after implementation is very costly and requires
workarounds which sometimes increase the attack surface.

Building Security In Maturity Model (BSIMM)1 collects statistics from
95 companies and gauge their level of adoption with respect to several secure
software development practices. According to this technical report [101],
security-specific code analysis techniques have successfully found their way
into the industrial practice, as two thirds of the surveyed companies routinely
adopt them. However, it is a bit discouraging to find that only one third of
the companies adopt architectural threat analysis. One possible explanation
for that is the lack of automation support of threat analysis, since available
tools require extensive human interaction for efficient use [44,45,102]. Another
possible explanation is the lack of an industry-standard technique for threat
analysis. In comparison with safety analysis techniques (failure analysis),
threat analysis have yet to mature in this area [103]. This paper attempts to
understand the potential road blocks to a wider adoption of threat analysis
techniques by systematically studying the existing methods.

Recently a limited and compendiary review of threat analysis techniques
has emerged [104] in a form of a short technical report, yet this review only
describes a handful of approaches. To the best of our knowledge, this is
the first systematic and complete review of the state of the art. We have
analyzed 38 primary studies for a total of 26 threat analysis techniques. With
this study we aim at providing information to the practitioners about the
extent the existing threats analysis techniques are applicable to their needs.
Providing such information to practitioners might facilitate active usage of the
aforementioned techniques and in the long-term cause techniques to mature.
The contributions of this work are threefold:

(i) We systematically analyze the existing literature and identify gaps for
future research,

(ii) we provide insight into the obstacles for adopting the existing approaches
in practice and how these obstacles could be overcome,

1https://www.bsimm.com

https://www.bsimm.com

2.2. RESEARCH METHODOLOGY 33

(iii) we provide insight into the adoption of the threat analysis techniques in
software engineering trends (i.e. DevOps, Agile development, IoT and
automotive).

The rest of the paper is organized as follows. Section 2.2 describes the
research methodology, including the research questions and data extraction
strategy. Section 2.3 presents the results, while Section 2.4 discusses them. The
threats to validity are listed in Section 2.5. Section 2.6 discusses the related
work and Section 2.7 presents the concluding remarks.

2.2 Research methodology
We conducted our research by adopting the systematic literature review method.
By following the steps introduced by Kitchenham et al. [80], we collected and
analyzed the literature. According to the guidelines, our study consisted of
three main steps: planning, conducting and documenting the review. The SLR
was motivated by the need to strengthen security engineering practices in the
SDL, desired both by academia and industry. We searched for similar studies in
the ACM, IEEE, Google Scholar and Scopus digital libraries (November 2016),
to establish whether an SLR about threat analysis techniques was previously
conducted. None of the mentioned digital libraries contained an SLR about
threat analysis techniques, reaching the same goals and objectives.

2.2.1 Research questions

The initial goal of this study is to catalog and characterize the existing threat
analysis techniques. Thereafter, the second goal of our work is to provide future
directions and to address how the techniques can be used by practitioners
including their adoption to the latest software engineering trends. To this end,
a critical analysis of the selected literature was performed answering three main
research questions, which are reflected in the assessment criteria, presented in
Tables 2.2, 2.4 and 2.5.

RQ1: What are the main characteristics of the identified tech-
niques? We have organized the first research question into four inquiries (refer
to Table 2.2 for more details).

Applicability (RQ1.1). What level of abstraction is the threat analysis
technique applicable to? Threat analysis can be conducted on projects, where
little is known about the actual system in the early design stages. However,
systems are sometimes also analyzed for threats later-on in the SDL. For
instance, integration of new units in a code-base may require a threat analysis
of the effected components. Therefore, such an analysis might be performed
on a low-level of abstraction (e.g. static code analysis).

Input (RQ1.2). What information do the identified techniques require as
input? This question refers to the information about the system that is required
in order to execute the analysis. In particular, it aims at identifying the type
and the representation of required information for executing the analysis. This
information helps researchers and practitioners to determine which approaches
can be adopted according to the available software artefacts.

34 CHAPTER 2. PAPER A

Procedure (RQ1.3). What kind of activities are part of the analysis proce-
dure of the identified techniques? This research question aims at determining
how the input is transformed to obtain the desired outcomes of the analy-
sis. Most threat analysis techniques, such as STRIDE [9,105], CLASP [106],
OCTAVE [107], etc. require expert knowledge for execution. However, some
methods are supported by catalogs of security threats, which aid the identifica-
tion of threats by providing contextual examples. This study considers such
techniques as knowledge-based. Furthermore, we observe the level of precision
of threat analysis procedures. A higher precision may increase the quality of
the analysis and provide opportunities for security compliance. Commonly, the
technique documentation includes descriptive guidelines for analysis execution,
yet no clear definition is given for when the procedure ends. As part of this
research question we also investigate how the proposed techniques determine
when the analysis should stop (i.e. Definition of Done).

Finally, we also observe which security concerns are accounted for and to
what extent is risk assessment present in the analysis procedure.

Outcomes (RQ1.4). What information is gained by the outcomes of the
identified techniques? This question intends to qualify the added value of
adopting a technique. The main purpose for investigating the outcomes is to
indicate what kind of results can be expected from the studied approaches.
Among others, we assess the granularity of outcomes as well as the available
quality assurance of outcomes.

RQ2: What is the ease of adoption of the identified techniques?
Our second research question is motivated from a more practical perspective
(see Table 2.4). It aims to determine the challenges of adopting the studied
approaches in practice. This work refers to ease of adoption as a broader term
compared to “usability”. First, tool availability is a strong indicator of technique
maturity. Unfortunately, fully stand alone tools are less common compared to
prototype tools or tool extensions. Second, practitioners benefit from a com-
plementary guidance for execution. The guidance could provide fine- or coarse-
grained instructions for using the proposed tool in combination with the theo-
retical concepts of the approach. Third, tools are typically accompanied by tool
documentation. We also investigate whether there are other sources of technique
documentation available (e.g. demonstrations). Finally, the ease of adopting the
studied approaches is also dependent on the required knowledge and skill set of
the analyst. For instance, approaches that require extensive education in formal
methods will be difficult to use for software engineers without additional training.
Likewise, manual approaches typically require domain knowledge and knowledge
about security attacks and countermeasures. To this aim, the second research
question aims to determine the target audience of the proposed approaches.

RQ3: What evidence exists that threat analysis techniques work
in practice? The purpose of this question is to identify the extent of validation
conducted for a technique. In addition to previously mentioned characteristics,
providing evidence about a realistic application of an approach is very important
to practitioners as well as academics. In the scientific community, validation
has to be extensive and reproducible. Unfortunately validation is sometimes
under-prioritized (as summarized in Table 2.5). First, this research question

2.2. RESEARCH METHODOLOGY 35

aims to determine the type of validation method used to evaluate the proposed
approaches (e.g. case studies). Second, we aim to determine who performed
the validation (e.g. a third party). The reader should note that we do not
attempt to undermine the validation efforts contributed by the authors of
the techniques. Third, this research question aims to identify the domain of
validation (e.g. automotive, web based systems, etc). Validation across different
domains further enables the generalizability of results. In general, extensive
validation includes different validation methods across domains, preferably also
performed by validators with no conflict of interest.

2.2.2 Search strategy
The search strategy included an automatic search of digital libraries using
a search string validated by experts. According to the SLR guidelines and
lessons learned [108], the search string is comprised of keywords grouped into
four categories.
ACM and Scholar
(1) (secur* OR privacy) AND
(2) (abuse OR misuse OR risk OR threat* OR attack* OR flaw*) AND
(3) (analysis OR assess* OR model* OR management OR elicit*) AND
(4) (system OR software OR application)
IEEE
(1) (secur* OR privacy) AND
(2) (abuse OR misuse OR risk OR threat* OR attack* OR flaw) AND
(3) (analysis OR assess* OR model* OR elicitation) AND
(4) (system OR software OR application)

We conducted pilot searches in order to refine the search string. While
doing so, we excluded the keywords that did not produce additional search
results. Furthermore, due to additional constraints imposed by the digital
libraries (IEEE Xplore), we restricted the number of keywords and “wildcard”
characters (*). To this aim, we have decided to use a second, similar search
string used to search within keywords, title, abstract and full text of the
publications. Keywords related to security and privacy are in the first group of
terms. Keywords limiting the search results to black-hat (type) of techniques
are in the second group of terms. The third group of keywords specifies the
activity of the target techniques. Finally, the fourth group of keywords limits
the scope to software, systems and applications.

Figure 2.1 shows the adopted search method of this study. We adopt two
techniques to search the existing literature in this study: (i) automatic search
of digital libraries and (ii) backwards snowballing.

Digital libraries. We have obtained studies from the digital libraries using
the search string. In January 2017, ACM returned 5129 titles, IEEE Xplore
20853 and Google Scholar 155000 search results. The search results were
ordered by relevance and cut to top 2000 for ACM and IEEE and to top
1000 for Google Scholar, resulting in a total of 5000 search results. We then
proceeded to filter the search results in several steps as shown in Figure 2.1.

The CORE [109] ranking portal was used for assessing the rank for both con-
ference and journal venues. The portal provides two separate search interfaces,

36 CHAPTER 2. PAPER A

Figure 2.1: Search method used in this study. The digital libraries were queried
in January 2017.

one for conference venues 2 and one for journal venues .3 Journal venues are
ranked based on the ERA ranking process [110]. The ranking assigns conference
and journal venues into the following categories: (i) A∗ - leading venues in
a discipline area, (ii) A - highly respected venues, (iii) B - good venues, (iv)
C - venues meeting the minimum standards, and (v) Unranked - insufficient
quality data has been provided to determine the ranking. In the first filtering
step (filtering 1) the publications presented at a venue with CORE rank below
B were excluded. The publications that were presented at an unranked venue
required further investigation for exclusion. The inclusion and exclusion criteria
(Table 2.1) were manually applied to the title and keywords. After this step,
the amount of search results considerably decreased to 136.

In the second filtering step (filtering 2) the inclusion and exclusion criteria
(Table 2.1) were applied to the abstract and conclusion sections of the 136
remaining publications. After this step, the amount of search results decreased
to 62.

Finally, 62 papers were read entirely. In the third filtering step (filtering
3) the inclusion and exclusion criteria were applied to the entire paper, which
resulted in the exclusion of 31 papers. After this step, the amount of search
results decreased to 31.

Snowballing. We have also performed the backward snowballing search
technique [81]. Essentially, this involves repeating the entire search strategy
on the referenced work of a final set of papers. In our case, snowballing was
performed on 31 papers. In the fourth filtering step (filtering 4) the inclusion
and exclusion criteria were applied to the entire paper obtained by backwards
snowballing. After this step, the amount of search results increased to 38,
leading to the final primary studies.

2http://portal.core.edu.au/conf-ranks/
3http://portal.core.edu.au/jnl-ranks/

http://portal.core.edu.au/conf-ranks/
http://portal.core.edu.au/jnl-ranks/

2.2. RESEARCH METHODOLOGY 37

Table 2.1: Inclusion and exclusion criteria.

Inclusion criteria

1. Primary studies
2. Studies (i.e. papers) that address methodologies, methods or techniques for identifying,

prioritizing and analyzing security threats to a system including a software component.
3. Studies that relate to software design.
4. Studies that relate to security or privacy of software related systems.

Exclusion criteria

1. Studies written in any language other than the English language.
2. Short publications and posters (< 3 pages).
3. Publications at venues with a CORE rank below B (explained in Section 2.2.2).
4. Publications that were unavailable through the search engine.
5. Studies that focus on concrete mitigation strategies, security solutions, taxonomies of

security threats and security analysis of systems.
6. Studies that focus on anomaly detection and intrusion detection systems.
7. Publications about safety-hazard analysis and detection methods and studies investi-

gating the relationships between safety and security requirements.

2.2.3 Inclusion and exclusion criteria
Table 2.1 presents the summarized inclusion and exclusion criteria. We re-
stricted the review to work published at any time before January 2017 that
present a contribution in the area of threat analysis throughout the Software
Development Life-cycle. The first five exclusion criteria in Table 2.1 are self-
explanatory. We have noticed that a large amount of search results focused on
anomaly detection and intrusion detection systems. Furthermore, the search
results contained a lot of work published on safety-hazard analysis and relation-
ships between safety and security requirements. For these reasons we added
the last two exclusion criteria (6 and 7 in Table 2.1).

2.2.4 Data extraction

Table 2.2: Assessment criteria corresponding to research question RQ1.

Characterization (RQ1)

Applicability Level of abstraction Requirements level
Architectural level
Design level
Implementation level

Input Type Goals
Requirements
Attacker behavior
Security assumptions
Architectural design
Source code

Representation Textual description
Model-based
Other

Procedure Knowledge based No
Yes

Level of precision None
Based on examples
Based on templates
Semi-automated
Very precise

38 CHAPTER 2. PAPER A

Security objectives Confidentiality
Integrity
Availability
Accountability
Not applicable

Risk Not considered
Internal part of technique
Externally considered

Stopping condition Present
Not present

Outcomes Type Mitigations
Threats
Security requirements

Representation Structured text
Model-based
Other

Assurance of quality Explicit
Present
Not present

Granularity High-level
Low level

Table 2.4: Assessment criteria corresponding to research question RQ2.
Ease of adoption (RQ2)

Tool support None
Prototype tool
Tool

Guidance for execution Coarse grained phrases
Fine grained steps
No structure

Documentation Publication
Tutorial
Presentations
Tool documentation
Demonstration

Target audience Engineer
Security trained engineer
Security expert
Researcher

Table 2.5: Assessment criteria corresponding to research question RQ3.
Validation (RQ3)

Type Case study
Experiment
Illustration

Validator None
Author
3rd party
both

Domain Automotive
IS
SOA
SCADA
...

Tables 2.2, 2.4 and 2.5 depict the assessment criteria used to record the
information that was needed to answer the research questions. We have
extracted the information from 38 publications by building a database of the

2.2. RESEARCH METHODOLOGY 39

identified techniques and corresponding assessments. In this section, we provide
the rationale behind some of our choices for criteria levels.

The types of input were determined by choosing the most commonly required
information for threat analysis to start. This includes requirements (functional
or non-functional), attacker behavior, security assumptions, architectural design,
source code and goals. The term “goal” is often used as a general term, yet
this work makes a distinction between requirements (i.e. goal refinements) and
goals. Threat analysis of a system requires at least: (i) the knowledge of what
the system is (architecture, source code, functional requirements) and (ii) what
it should be protected from (security assumptions, attacker behavior).

Studies have shown (e.g. Yuan et al. [111], Wang et al. [112], Williams et
al. [113]) that including knowledge base (e.g. taxonomies, catalogs of misuse
and abuse cases, attack scenarios and trees, etc.) helps the analyst to identify
and analyze threats. Therefore we were interested to record which existing
techniques provide a knowledge-base. We have assessed the techniques as
knowledge based if the they are supported by some external source of informa-
tion which helps raise the quality of outcomes. For instance, some techniques
provide a catalog of example threats (e.g. STRIDE [9, 105]), templates (e.g.
misuse cases) or even use one of the existing databases (such as CAPEC,4
CWE,5 CVE6) to compute threat suggestions.

In addition to knowledge base, we are interested in observing the precision
of the analysis techniques. By “precision”, we refer to the repeatability or
reproducibility of the obtained results. In other words, “precision” is the
degree to which repeated measurements under unchanged conditions show
the same results [114]. In our case, it would not be an ideal situation every
time an expert makes security threat analysis on the same software artefact
(e.g., software design, architecture, requirements, source code, etc.) under the
same conditions and comes up with a different set of security threats as a
result of this analysis. However, as it was shown by cognitive psychologists,
humans are incorrigibly inconsistent in making a summary of judgments of
complex information [115–117]. As a result, humans frequently give different
answers when asked to evaluate the same information twice and this leads to
the lack of precision in expert judgments in “low validity environments”, which
are environments that are not sufficiently regular to be predictable [117,118].
Figuring out potential security threats for a software system by analyzing
its high level design, more fine grained architectural design, its requirements
documents or source code also corresponds to making predictions in a low
validity environment, as there are many parameters one cannot think of in
advance such as the configurations of the final software when it is deployed
on site. It was shown that the existence of formulas and algorithms as a
backup to expert judgment improves precision [119]. Therefore, we assessed the
precision of each technique by observing whether the procedure of analysis is:
(i) supported by a formal framework (very precise), (ii) supported by tools that
semi-automate the analysis, (iii) based on templates, (iv) based on example
threats or (v) not accounting for precision (none).

Since risk assessment plays an important role in threat prioritization,
4https://capec.mitre.org/
5https://cwe.mitre.org/
6https://cve.mitre.org/

https://capec.mitre.org/
https://cwe.mitre.org/
https://cve.mitre.org/

40 CHAPTER 2. PAPER A

we have investigated to what extent the techniques consider risk. Namely,
some studies focus on associating risk levels to identified threats, while others
consider risk externally, e.g. by combining the technique with an external risk
management framework.

Notice that in addition to assessing the type and representation of analysis
outcomes, this work also investigates the quality assurance of outcomes. We
assess the techniques on this criterion by observing whether the quality assur-
ance of outcomes is explicit, present or absent (none). Analysis techniques
that explicitly assure the outcomes for quality define this activity as part of
the analysis procedure. For instance, if the outcomes are represented with
models, the technique may perform model verification as part of the analysis
procedure (as presented by Dianxiang Xu and K. E. Nygard [49]). However,
explicit quality assurance of outcomes is not always present in the studied
approaches. If the techniques provide informal guidelines for assessing the
quality of outcomes (such as a checklist of most common threats), this study
still considers that a form of quality assurance is present. Finally, this work
investigates the granularity of outcomes. We assess the granularity of outcomes
with two levels: high-level and low-level outcome. For example, the analysis
technique presented by Almorsy et al. [44] projects the outcomes on models,
which can be transformed into source code. Therefore, we have assessed that
this technique produces a low-level outcome. On the other hand, Haley et
al. [120] present so called “threat descriptions”, which are descriptive phrases
of the form: performing action “X” on/to asset “Y” could cause harm “Z”.
Therefore, we have assessed that this technique produces a high-level outcome.

As per RQ2 (Table 2.4), this study also assesses the available support for
executing a threat analysis technique. Coarse grained guidance for execution
include high-level overview of the technique with less detailed descriptions (only
using key verbs, for instance). For instance, describing the threat identification
as “brainstorming threats with participants” is considered as a coarse-grained
guideline. E.g. Whittle et al. [102] provide a recommended process for develop-
ing and testing executable misuse cases. Yet, the authors do not further explain
how the attack scenarios are identified or how the mitigations are supposed to
be re-designed in case the simulation ends in a successful attack. On the other
hand, Chen et al. [121] exemplify how to use the supporting tool by describing
one instance run. Guidelines are considered to be fine-grained if they include
precise instructions for analysis execution.

The target audience for the techniques was assessed to understand the
minimum knowledge and skills required in order to execute each analysis
technique. We identified four levels of competency, three of which are aligned
to the Software Assurance Competency Model presented in [122]. Table 2.6
shows the mapping between the competency levels and the target audience
considered in our work. An engineer is considered to posses the knowledge and
skills of the competency level L1. A security trained engineer is considered to
possess an active knowledge of security related concepts and has an engineering
degree (BSc and/or MSc), which corresponds to levels L2-L3. Finally, a security
expert corresponds to the levels L4-L5. In this work we consider researches to
possess an active knowledge of practical as well as theoretical concepts in the
field of security in software engineering.

As per RQ3 (Table 2.5) we have developed the assessment criteria to un-

2.2. RESEARCH METHODOLOGY 41

Table 2.6: Target audience considered in this work in relation to the competency
levels in [122].

Target audience Level Major tasks Exemplary title

Engineer L1 Tool support, low-level imple-
mentation, testing, and mainte-
nance

Junior Software Developer,
Acceptance tester, Junior Se-
curity Engineer, Software As-
surance Technician

Security trained
engineer

L2-L3 Requirements fundamentals and
analysis, architectural design,
implementation, risk analysis
and assessment

Security Analyst, Release En-
gineer, Information Assur-
ance Analyst, Maintenance
Engineer, Senior Software De-
veloper, Software Architect

Security expert L4-L5 Assurance assessment, assur-
ance management, risk manage-
ment across the SDL, advancing
in the field by developing, mod-
ifying, and creating methods,
practices, and principles at the
organizational level or higher

Project Manager, Senior Soft-
ware Architect, Chief Infor-
mation Assurance Engineer,
Chief Software Engineer

Researcher - Remain in touch with the cur-
rent research and publish own
research in the discipline of se-
curity in software engineering

PhD student, Post Doctoral
candidate, Assistant Profes-
sor, Senior lecturer, etc.

derstand how each technique was validated. We have assessed the validation
of each technique with three levels: case study, experiment and illustration.
A case study is sometimes a rather loosely used term in software engineering.
According to Runeson and Höst [123] the presented case studies in software
engineering range from very ambitious and well organized studies in the field,
to small toy examples that claim to be case studies. A case study is a research
methodology used to study a real phenomena of exploratory, descriptive, ex-
planatory and improving purpose, the later being most popular in software
engineering [123]. It requires rigorous planning, data collection and triangu-
lation, data analysis, a discussion on threats to validity and evidence based
conclusions. This work considers all applications of the proposed approach to a
real world problem as case studies, in spite of only a handful (if any) conforming
to the previous definition. In addition to case studies our assessment criteria
includes two other forms of validation, namely illustrations and experiments.
In contrast to the lightweight illustrations, experiments measure the effects
of manipulating dependent variable(s) on an independent (response) variable.
Experiments identified within this study were mostly experiments in empirical
software engineering (e.g. comparative experiment of two techniques).

2.2.5 Quality assurance in this study
The selection of primary studies and data extraction was performed by a single
researcher (first author). In order to circumvent the effects of potential bias,
the following quality assurance plan was implemented.

Random assessment of included/excluded publications. We have randomly
selected 10% of search results and the second author has applied the inclusion
and exclusion criteria independently (filtering 1 in Figure 2.1). The outcome
has been compared to the results of the first author. The few disagreements (2
papers) of plausible exclusion were discussed between the the two researchers
until an agreement was reached. A summary of this discussion was submitted

42 CHAPTER 2. PAPER A

● ● ●

● ● ●

●

●

●

●

●

● ● ●

●

● ●

●1

2

3

4

5

2000 2005 2010 2015

Year of publication

N
um

be
r

of
 p

ub
lic

at
io

ns

Figure 2.2: Year of publication for the selected techniques.

to the third author of this study for further assurance. In summary, we are
confident that the inclusion and exclusion criteria was crisp enough to minimize
any selection bias.

Random quality check of data extraction. A second random quality check
was performed by the second author with regards to the data extraction. A
random sample of the included publications (5 publications, roughly 10%)
was independently re-assessed. The outcomes of this quality check were again
compared to the outcomes obtained by the first author. This comparison
yielded to a few discrepancies due to the perceived definition of certain criterion
levels (6 out of 67 criterion levels). The first and second author revisited the
precise differences between: (i) tool and prototype tool, (ii) engineer with
security background and security expert, (iii) goal and requirement, (iv) design
and architectural level of abstraction, (v) external and internally considered
risk, and (vi) case study and illustration. After a consensus was reached, the
first author of this study manually examined the rest of the publications (90%)
to assure that the assessments were correct. To conclude, the authors are
confident that the data was extracted correctly.

Continuous soundboarding. Informally, several sessions were held with
all authors to maintain the quality of the review. For instance, the list of
publications obtained from the initial pilot review were discussed. Further, the
inclusion, exclusion and assessment criteria were refined during such sessions.
These sessions were held continuously as sanity checks for the first author.

2.3 Results
In this section, we first overview the techniques and then present the answers
to the research questions. We conclude this section with recommendations for
practitioners, offering insight to the reader for when to use certain techniques.

2.3.1 Overview of threat analysis techniques
Figure 2.2 shows a time-line of the 38 publication included in this SLR. Overall,
the interest in the area of threat analysis approaches seems to be rather constant
with an average of 2 publications per year. Despite a the slight progression of
publications observed from early 2000 until 2007, it is difficult draw tendencies
due to the small numbers.

2.3. RESULTS 43

Table 2.7: Threat analysis techniques. Note that, some publications were
grouped by leading authors, sometimes resulting in observing separate tech-
niques rather that fully fledged methodologies.

Methodology Ref Technique

Abe et al. [124] Threat patterns, negative scenarios
Almorsy et al. [44] Attack scenarios
Attack and Defense Trees [34,125] Attack trees, defense trees
Beckers et al. [126] MUC
Berger et al. [45] DFDs, rule-based graph matching
CORAS [127] Threat, risk, treatment diagrams and descriptions
Chen et al. [121] Attack paths
Dianxiang Xu and K. E. Nygard [49] Petri-nets
El Ariss and Xu [128] State charts
Encina et al. [129] Misuse patterns
Extended i* [130–

133]
Attacker agents with goals

Haley et al. [120,134] Threat tuple-descriptions with rebuttals to claims
Halkidis et al. [135] STRIDE, Fault tree analysis
Hatebur, Heisel et al. [36–38] Problem frames
J. McDermott et al. [136,137] Abuse cases
KAOS [138–

140]
Threat graphs rooted in anti-goals, anti-models,
threat trees

Karpati et al. [141,142] MUC maps, MUC, attack trees
LINDDUN [11] Threat to (DFD) element mapping, threat tree pat-

terns, MUC scenarios
Liu et al. [143] Attacker agents with goals
P.A.S.T.A. [29] Threat scenarios with associated risk and countermea-

sures
STRIDE [9,105] Threat to (DFD) element mapping
Sheyner et al. [47] Attack graphs
Sindre and Opdahl [35] MUC
Tong Li et al. [144] Automated generation of attack trees
Tøndel et al. [145] MUC, attack trees
Whittle et al. [102] MUC

44 CHAPTER 2. PAPER A

Table 2.7 depicts threat analysis techniques included in this SLR. Most
commonly used techniques in the presented body of knowledge were misuse
cases, attack trees, problem frames and several software-centric approaches.

Misuse cases (MUC) are derived from use cases in requirements engineering.
In the form of templates, they are used to capture textual descriptions of threat
paths, alternative paths, mitigations, triggers, preconditions, assumptions,
attacker profiles, etc. The literature also mentions abuse cases, MUC maps
and MUC scenarios. The difference between misuse and abuse cases is subtle
and the two terms are sometimes used interchangeably. Strictly speaking,
abuse is misuse with malicious intent. MUC maps and scenarios both focus on
representing chained attacks, from start to the end of vulnerability exploitation.

Another way of identifying alternative paths of attack is by using attack
(or threat) trees, where the root node is refined into leaves representing all
possible attacker actions. Therefore an attack path is a single path starting
at leaf node leading to the root node. Attack trees are commonly adopted in
a combination with other techniques. For instance, LINDDUN [11] proposes
a combined analysis by first mapping the threats to (DFD) elements, using
threat tree patterns and usage scenarios in order to identify MUC scenarios.

Much like threat patterns, problem frames are used to describe problems
in software engineering. They define an intuitively identifiable problem class
in terms of its context and the characteristics of its domains, interfaces and
requirements (M. Jackson [146]). As such problem frames are rather general in
scope, therefore conceptualized security problem frames were soon introduced
(Hatebur, Heisel et al. [37] [36] [38]).

Goal-oriented requirements engineering (GORE) perceives systems as a
set of agents communicating in order to achieve goals. In GORE goals (or
anti-goals) are refined until finally requirements (or anti-requirements) are
achieved.

Finally, several software-centric techniques are well recognized in the soft-
ware engineering community, particularly in the industrial space, such as
STRIDE [9,105], CORAS [127], P.A.S.T.A [29], DREAD [147], Trike [148], to
name a few.

Table 2.8 shows the analysis techniques, their respective domains of val-
idation and tool support. It is generally acceptable to group threat analysis
techniques into risk-centric, attack-centric and software-centric techniques.

Risk-centric threat analysis techniques focus on assets and their value to
the organization. They aim at assessing the risk and finding the appropriate
mitigations in order to minimize the residual risk. Their main objective is to
estimate the financial loss for the organization in case of threat occurrence (e.g.
CORAS [127]). Therefore, when risk-centric techniques are used assets dictate
the priority of elicited security requirements.

On the other hand, attack-centric threat analysis techniques focus the anal-
ysis around the hostility of the environment. They put emphasis on identifying
attacker profiles and attack complexity for exploiting any system vulnerability
(e.g. Attack trees [34]). Their main objective is to achieve high threat coverage
and identify appropriate threat migitations.

Finally, the literature also mentions so-called software-centric threat analysis
techniques. This group includes techniques that focus the analysis around the
software under analysis. For example, in STRIDE [9] [105] the analysis is per-

2.3. RESULTS 45

Table 2.8: The selected analysis techniques.

Methodology Ref Approach Domain Tool Validation

Abe et al. [124] Attack-centric IS none CS
Almorsy et al. [44] Attack-centric ERP, Web,

E-commerce
none EXP

Attack and
Defense Trees

[34,125] Attack-centric IS, other, ATM tool CS,EXP,ILU

Beckers et al. [126] Privacy Cloud computing,
E-bank

none ILU

Berger et al. [45] Attack-centric Logistic
application

tool CS

CORAS [127] Risk-centric Telecom, SCADE,
IS

tool CS,EXP

Chen et al. [121] Attack-centric IT, COST prototype CS
Dianxiang Xu and
K. E. Nygard

[49] Attack-centric Web store none CS

Encina et al. [129] Attack-centric Cloud services none CS
Extended i* [130–

133]
GORE Web-IS tool ILU

Haley et al. [120,134] SRE Air traffic, HR, IS none CS,ILU
Halkidis et al. [135] Risk/Attack-

centric
E-commerce tool EXP

Hatebur, Heisel et
al.

[36–38] Risk/Attack-
centric

E-commerce tool ILU ,CS

J. McDermott et
al.

[136,137] SRE IS none CS

KAOS [138–
140]

GORE E-commerce, Web
store, Ambulance
system

tool CS

Karpati et al. [141,142] Attack-centric Banking system,
IS, Web-based IS

tool CS,EXP

LINDDUN [11] Privacy,
GORE

Social network,
E-health
application

none CS,EXP

Liu et al. [143] SRE, GORE IS tool CS
P.A.S.T.A. [29] Risk-centric Web-bankig

application
none ILU

STRIDE [9,105] Software-
centric

IS, automotive,
other

tool CS,ILU,EXP

Sheyner et al. [47] Attack-centric System Network tool ILU
Sindre and Opdahl [35] SRE E-store,

Telemedicine
tool CS,EXP

Tong Li et al. [144] Attack-centric Smart grid prototype CS
Tøndel et al. [145] Attack-centric IS none ILU
El Ariss and Xu [128] Attack-centric Web store none CS
Whittle et al. [102] SRE E-voting, CPS tool CS

46 CHAPTER 2. PAPER A

Table 2.9: The characteristics of the applicability and input of the selected
techniques.

Applicability Input
Abstraction Type Repre-

senta-
tion

Methodology Ref R
eq

ui
re

m
en

ts

A
rc

hi
te

ct
ur

al
D

es
ig

n

Im
pl

em
en

ta
ti

on

R
eq

ui
re

m
en

ts

A
tt

ac
ke

r
be

ha
vi

or
Se

cu
ri

ty
as

su
m

pt
io

ns

A
rc

hi
te

ct
ur

al
de

si
gn

So
ur

ce
co

de
G

oa
ls

T
ex

tu
al

de
sc

ri
pt

io
n

M
od

el
-b

as
ed

O
th

er

Abe et al. [124] • • •
Almorsy et al. [44] • • • • • • • • •
Attack and Defense Trees [34,125] • • • •
Beckers et al. [126] • • •
Berger et al. [45] • • • •
CORAS [127] • • •
Chen et al. [121] • • • • •
Dianxiang Xu and K. E. Nygard [49] • • • •
El Ariss and Xu [128] • • •
Encina et al. [129] • • •
Extended i* [130–133] • • •
Haley et al. [120,134] • • • • • • •
Halkidis et al. [135] • • • • •
Hatebur, Heisel et al. [36–38] • • • • • • • • •
J. McDermott et al. [136,137] • • •
KAOS [138–140] • • •
Karpati et al. [141,142] • • • • • •
LINDDUN [11] • • • • • •
Liu et al. [143] • • •
P.A.S.T.A. [29] • • • • • • • •
STRIDE [9,105] • • • • •
Sheyner et al. [47] • • •
Sindre and Opdahl [35] • • • •
Tong Li et al. [144] • • • • •
Tøndel et al. [145] • • • • •
Whittle et al. [102] • • •

formed on DFDs, which provide a high-level architectural view of the software.
However, not all threat analysis techniques can be categorized in the afore-

mentioned three groups. For instance, in GORE the main goal could be
“stealing the GPS coordinates of a vehicle fleet”. In this case, the analysis would
clearly evolve around that particular asset and could be therefore considered
as risk-centric. Yet, the main goal could also be “malicious access to a DNS
server”. In this case, the discussions and the analysis can be considered as
attack-centric. For this reason, we categorize the techniques also as “GORE”,
“SRE” and “Privacy”, as shown in Table 2.8.

Overall, a majority of techniques are attack-centric (≈ 45%) and require-
ments engineering approaches (GORE ≈ 20%, Security Requirements Engi-
neering (SRE) ≈ 15%). We continue to present the results for the research
questions in the subsequent sections.

2.3. RESULTS 47

2.3.2 RQ1: Characteristics
Table 2.9 shows the characteristics of the applicability and input of the selected
techniques.

Applicability (RQ1.1). In general, threat analysis can be performed it-
eratively at several stages of the software development. In this study, we
differentiate between abstraction levels according to the input information re-
quired for analysis execution. We have assessed each technique for applicability
at the level of requirements, architecture, design and implementation. For
instance, in order to create and manually analyze attack trees the analyst only
needs high level goals (or anti-goals). Therefore, the most basic form of attack
trees are applicable at the level of requirements and architecture. In this study
we make a distinction between the design and architectural level of abstraction.

On the architectural level of abstraction requirements are used in order to
construct the architecture. Software architecture is a set of principal design
decisions made about the system (as defined by N. Taylor et al. [149]). The
outcomes of this level of abstraction are high-levels diagrams (such as DFDs),
sequence diagrams, flow-charts etc. The word “principal” here indicates that not
all design decisions are architectural. In fact many design decisions are related
to the domain, algorithms, programming languages or are based on preference.

Therefore, designing the intended architecture includes committing to a set
of architectural styles and patterns, which are further refined until a detailed
design is evaluated against the system requirements. The outcomes of this
level of abstraction include most (or all) the design decisions made about the
system (e.g. component diagrams, connector types and interfaces, deployment
diagrams, etc).

Only two techniques are applicable at the level of implementation, where
a concrete system is taken into account. First, Almorsy et al. [44] describe
a semi-automated Model-Driven Engineering (MDE) approach for a partial
architecture reconstruction, followed by a risk-centric threat analysis. Second,
Chen et al. [121] presents a quantitative threat analysis approach based on
attack-path analysis of COTS systems. Predominantly, the techniques are appli-
cable at the level of requirements (14 techniques), architecture (14 techniques)
and design (11 techniques).

Input (RQ1.2). The input of a threat analysis technique is all the informa-
tion required in order to begin with threat identification. In order to understand
the input information for each threat analysis technique, we have observed
input type and representation. The input type can vary from high-level goals,
requirements, attacker behavior, security assumptions, architectural design to
source code of the system under analysis. For instance, the root node in an
attack tree, typically referred to as an anti-goal, is decomposed into hierarchical
leaves of possible attacker actions. Despite the domain knowledge and security
expertise needed to find anti-goals and possible attack actions, the analyst does
not require more than a high-level description of the system (e.g. in terms of
its business functionality). The input representation was assessed with three
levels: textual description, model-based and other.

One third of the analyzed techniques require as input architectural design
(12 techniques) and one third requirements (11 techniques). Some techniques
(6) consider the attacker behavior as input. Security assumptions are required

48 CHAPTER 2. PAPER A

Table 2.10: The characteristics of threat analysis procedure. KB = Knowledge
Base.

KB Precision Objectives Risk

Methodology Ref Y
es

N
o

N
on

e
B

as
ed

on
ex

am
pl

es

B
as

ed
on

te
m

pl
at

es

Se
m

i-
au

to
m

at
ed

V
er

y
pr

ec
is

e

C
on

fid
en

ti
al

it
y

In
te

gr
it

y

A
va

ila
bi

lit
y

A
cc

ou
nt

ab
ili

ty

N
ot

ap
pl

ic
ab

le

N
ot

co
ns

id
er

ed
In

te
rn

al
pa

rt

E
xt

er
na

lly
co

ns
id

er
ed

Abe et al. [124] • • • • • • •
Almorsy et al. [44] • • • • • • • •
Attack and Defense Trees [34,125] • • • •
Beckers et al. [126] • • • • • • •
Berger et al. [45] • • • • • • • •
CORAS [127] • • • • • • •
Chen et al. [121] • • • • • • •
Dianxiang Xu and K. E. Nygard [49] • • • • • • •
El Ariss and Xu [128] • • • •
Encina et al. [129] • • • • • • •
Extended i* [130–133] • • • • • • •
Haley et al. [120,134] • • • • • • •
Halkidis et al. [135] • • • •
Hatebur, Heisel et al. [36–38] • • • • • • •
J. McDermott et al. [136,137] • • • •
KAOS [138–140] • • • • • • • •
Karpati et al. [141,142] • • • •
LINDDUN [11] • • • • •
Liu et al. [143] • • • •
P.A.S.T.A. [29] • • • • • • •
STRIDE [9,105] • • • • • • •
Sheyner et al. [47] • • • •
Sindre and Opdahl [35] • • • •
Tong Li et al. [144] • • • • • • • •
Tøndel et al. [145] • • • •
Whittle et al. [102] • • • •

for analysis in less than 25% of techniques (7). Only one technique takes
source code into account as input to the analysis. Almorsy et al. [44] present
a technique where source code is an optional input to the analysis. Finally, in
some techniques (5) high-level goals were used as input to the analysis. The
required input is commonly represented either with textual descriptions (16
techniques), models (15 techniques) or both (6 techniques).

Procedure (RQ1.3). Threat analysis procedure includes all required actions
and tasks that the analyst needs to perform in order to obtain the desired
outcomes. As depicted in Table 2.10, we assess the characteristics of the
procedure that takes place during each analysis technique. To this aim we
observe traces of knowledge base, precision, security objectives and risk in the
procedure of each analysis technique.

On average about half of the techniques include a knowledge base of some
kind. As previously mentioned, knowledge base (domain or security knowledge)
helps the analyst to identify threats in the context of the system in question.
Yet, we have found that most approaches take advantage of the existing knowl-
edge base, rather than contribute with innovative examples (e.g. Hatebur et
al. [37]). For instance, Almorsy et al. [44], Berger et al. [45], Chen et al. [121]
and Tondel et al. [145] present formalized rules to extract knowledge from public

2.3. RESULTS 49

repositories of threats and vulnerabilities namely Common Weakness Enummer-
ation (CWE) [150] , Common Attack Pattern Enummeration and Classification
(CAPEC) [89], Open Web Application Security Project (OWASP) [151,152].

In general, the precision of the technique procedures is on the level of tem-
plates and examples (about half of the publications). Four techniques (namely,
Attack and defense trees [34] [125], Dianxiang Xu and K. E. Nygard [49], Haley
et al. [120] [134] and KAOS [138–140]) formally approach the analysis and are
therefore very precise. Finally, six techniques (Almorsy et al. [44], Berger et
al [45], Chen et al. [121], KAOS [138–140], Sheyner et al. [47] [153], Tøndel
et al. [145], Whittle et al. [102]) introduce a semi-automated approach using
tools (or prototype tools). According to our assessment, about a quarter of
techniques (7) describe the analysis procedure with no regards towards the
precision of the analysis.

A majority of techniques address security objectives explicitly in the pre-
sented approach. Some studies specifically mention only one security objective,
yet in our assessment we include other security objectives that could be directly
applied in the proposed approach. For instance, Hatebur, Heisel et al. [36–38]
describe problem frames by introducing the authentication frame, therefore they
consider confidentiality and integrity. However, the authors do not initialize
possible problem frames for all security objectives. Ultimately, we do not see
significant obstacles to introduce problem frames for other security objectives.

About half of the techniques (12) do not include risk assessment as part of
the threat analysis technique. The rest of the studies are either risk-centric (7
techniques) or consider risk as an external activity (7 techniques).

Outcomes (RQ1.4). As previously mentioned, we have observed the type
and representation of outcomes. Table 2.11 shows the outcome characteris-
tics of the selected techniques. We have monitored three types of outcomes:
threats, mitigations and security requirements. All techniques present ap-
proaches that produce threats as main outcomes. Threat mitigations are
security countermeasures planned for lowering the residual risk. Design-level
security countermeasures are further on refined into implementable security
requirements. Beyond threats as main outcomes, about half of the techniques
also produce threat mitigations (15) and security requirements (12) as outcomes.
In fact about a third of the techniques (8) produce all three types of outcomes
(namely Dianxiang Xu and K.E. Nygard [49], Extended i* [130–133], Haley et
al. [120, 134], J. McDermott et al. [136, 137], KAOS [138–140], LINDDUN [11],
Sindre and Opdahl [35], Whittle et al. [102]).

In addition, we have observed the representation of outcomes. Most tech-
niques result in outcomes represented with either a structured text (16), model-
based form (16), or both (6). For instance, Whittle et al. [102] introduce an
aspect-oriented approach that results in finite state machines (model-based),
misuse cases (model-based) and elicited security requirements (structured text).

Next to the type and representation, we have observed the quality assurance
of outcomes for each analysis technique. Only a handful of techniques (3) have
an explicit way of assuring the quality of outcomes (namely, Dianxiang Xu and
K.E. Nygard [49], Haley et al. [120,134], KAOS [138–140]). For example, Haley
et al. [120,134] include an activity for constructing satisfaction arguments as
part of the procedure. The satisfaction arguments are used in order to verify
whether the primary and secondary goals are satisfied with the resulting security

50 CHAPTER 2. PAPER A

Table 2.11: The outcomes characteristics of the selected techniques.

Type Repre-
senta-
tion

Quality
assur-
ance

Granu-
larity

Methodology Ref M
it

ig
at

io
ns

T
hr

ea
ts

Se
cu

ri
ty

re
qu

ir
em

en
ts

St
ru

ct
ur

ed
te

xt
M

od
el

-b
as

ed

E
xp

lic
it

P
re

se
nt

N
ot

pr
es

en
t

H
ig

h-
le

ve
l

L
ow

-l
ev

el

Abe et al. [124] • • • •
Almorsy et al. [44] • • • • •
Attack and Defense Trees [34,125] • • • • •
Beckers et al. [126] • • • • •
Berger et al. [45] • • • • •
CORAS [127] • • • • •
Chen et al. [121] • • • • •
Dianxiang Xu and K. E. Nygard [49] • • • • • •
El Ariss and Xu [128] • • • •
Encina et al. [129] • • • • •
Extended i* [130–133] • • • • • •
Haley et al. [120,134] • • • • • •
Halkidis et al. [135] • • • •
Hatebur, Heisel et al. [36–38] • • • • • •
J. McDermott et al. [136,137] • • • • • • •
KAOS [138–140] • • • • • • •
Karpati et al. [141,142] • • • • •
LINDDUN [11] • • • • • •
Liu et al. [143] • • • • • •
P.A.S.T.A. [29] • • • •
STRIDE [9,105] • • • •
Sheyner et al. [47] • • • •
Sindre and Opdahl [35] • • • • • • •
Tong Li et al. [144] • • • • •
Tøndel et al. [145] • • • • • •
Whittle et al. [102] • • • • • • •

2.3. RESULTS 51

requirements. The rest of the techniques do not have an explicit activity for
quality assurance of outcomes. E.g., Beckers et al. [126] present a method for
information security management system for cloud IS that includes threat anal-
ysis based on patterns. Their structured approach is aligned with ISO 271001
security standard and includes guidelines for assuring the quality of outcomes.
Therefore, some form of quality assurance of outcomes is present, yet not ex-
plicitly defined. We have observed a presence of some kind of quality assurance
of outcomes in 6 techniques. Still, the quality assurance of outcomes is predom-
inantly not present in the techniques. For instance, Abe et al. [124] propose an
interesting approach for threat pattern detection and negative scenario gener-
ation, using transformation rules on sequence diagrams. However, the authors
do not evaluate or measure the quality of the generated negative scenarios.

Regarding the granularity of outcomes, only three of the techniques (namely
Almorsy et al. [44], Chen et al. [121], and Tøndel et al. [145]) produce low-
level outcomes (e.g. source code). Almost all of the techniques (25) result in
outcomes of high-level abstraction, which is in line with the results obtained
from observing the applicability of techniques (RQ1.1).

2.3.3 RQ2: Ease of adoption
As shown in Table 2.12, about a third of the techniques (9) do not include
any tool support. The rest are supported by tools (13 techniques) or present
a prototype tool (4 techniques). In general, the majority of studies include
coarse-grained guidelines for execution, which could be inferred from the pub-
lication. Six techniques provide fine-grained guidelines, yet three of them are
not supported by a tool. Furthermore, most approaches together with their
tools are only documented in the respective publications. Only a handful of
techniques provide a tool with precise guidelines on how to use it.

The target audience of the techniques are most commonly security ex-
perts (9) and security trained engineers (10). Most of the techniques describe
approaches that do not require extensive knowledge of any research field. Ac-
cording to our assessment, only two techniques are targeted more towards
researchers, namely Dianxiang Xu and K. E. Nygard [49] and Halkidis et
al. [135]. In general, knowledge base, automation and tool support can decrease
the level of required expertise. Despite that, important steps in the analysis
are still required by experts (namely, threat identification and prioritization).
Two techniques are thoroughly documented and two of them could be used
by engineers without further training (STRIDE [9,105] and KAOS [138–140]).
They are both knowledge-based (they provide example threats) and are well
documented (they provide tutorials, presentations, etc.) Evidently, the better
the approach is documented, the easier it is to apply in practice.

2.3.4 RQ3: Validation
As shown in Table 2.8, the majority of techniques (19) were validated with a
case study. Despite of the recently increasing quantity of empirical studies in
software engineering and the long history of advocating empirical research in
software engineering, there is still room for improvement [154]. About 20% of
techniques (8) were validated also with an experiment, reflecting the immatu-

52 CHAPTER 2. PAPER A

Table 2.12: The ease of adoption for techniques.

Tool
support

Execu-
tion

Document-
ation

Target
audience

Methodology Ref N
on

e
T

oo
l

P
ro

to
ty

pe

N
o

st
ru

ct
ur

e
C

oa
rs

e-
gr

ai
ne

d

F
in

e-
gr

ai
ne

d

P
ub

lic
at

io
n

T
ut

or
ia

l
P

re
se

nt
at

io
ns

T
oo

l
do

cu
m

.
D

em
on

st
ra

ti
on

E
ng

in
ee

r

Se
c

tr
ai

ne
d

E
ng

in
ee

r

Se
cu

ri
ty

ex
pe

rt

R
es

ea
rc

he
r

Abe et al. [124] • • • •
Almorsy et al. [44] • • • •
Attack and Defense Trees [34,125] • • • • • • • •
Beckers et al. [126] • • • •
Berger et al. [45] • • • •
CORAS [127] • • • •
Chen et al. [121] • • • • •
Dianxiang Xu and K. E. Nygard [49] • • • •
El Ariss and Xu [128] • • • •
Encina et al. [129] • • • •
Extended i* [130–133] • • • •
Haley et al. [120,134] • • • •
Halkidis et al. [135] • • • • •
Hatebur, Heisel et al. [36–38] • • • •
J. McDermott et al. [136,137] • • • •
KAOS [138–140] • • • • • • •
Karpati et al. [141,142] • • • • •
LINDDUN [11] • • • • •
Liu et al. [143] • • • •
P.A.S.T.A. [29] • • • • •
STRIDE [9,105] • • • • • • • • •
Sheyner et al. [47] • • • •
Sindre and Opdahl [35] • • • • •
Tong Li et al. [144] • • • •
Tøndel et al. [145] • • • •
Whittle et al. [102] • • • •

2.3. RESULTS 53

rity of empirical research in the software engineering community. In addition,
extensive validation (case studies and experiments) was often applied only in
the domain of Web systems (E-commerce, Web store, E-bank, Social network,
E-health, Web bank, E-store, E-voting). About one third of the techniques (9)
were validated by illustrations.

2.3.5 Recommendations for practitioners
Previously reported results have not considered any preferences between the
levels of our assessment criteria (e.g. model-based is preferred over textual
input). To complement the objectively reported results, we include a more
subjective reflection, where we aim at providing insights to the reader about
the benefits of adopting certain threat analysis techniques. To this aim we have
considered the amount of resource investment needed for adopting a technique.
In order to simplify the discussion we categorize the resource investments into
“small” and “large”.

If the planned resource investment is “small”, the organization is likely
to prefer using a technique as is, without any improvements. Additionally, if
security is not prioritized, the allocated budget might be sufficient only for
recruiting a security trained engineer (e.g. requirements engineer). In this case,
the time spent on threat analysis is limited. In addition, the target audience of
the technique should be engineers with or without security training. Therefore,
tool availability (and maturity), documentation, low target audience and a
lightweight procedure (i.e. level of precision is none, based on examples or
templates) are the most valued criteria for technique selection. According to
the results of this study, techniques originating in requirements engineering fit
this description. In our opinion, the tier techniques that could be adopted in
this kind of organizations are CORAS [127], Problem Frames (Hatebur, Heisel
et al.) [36–38], MUC (Sindre and Opdahl) [35] and Abuse cases (J McDermott
et al.) [136, 137], Extended i* [130–133], KAOS [138–140]. These techniques
seem to require less effort to use as they are less systematic and thorough.
They are more intuitive and are supported by toolkits such as RE-Tools.7

The aforementioned techniques lack guarantees for analysis correctness (i.e.
quality assurance of outcomes). In organizations where security is prioritized,
quality assurance of outcomes also becomes important. In this case, more
effort for threat analysis is justified. Therefore, the existing budget for security
is bigger, sufficient for recruiting security experts. The preferred techniques
should not only have good tool support and documentation, but also be sys-
tematic, thorough, expert-based and possibly semi-automated. In our opinion
STRIDE [9,105] and LINDDUN [11] are the tier techniques that fit this descrip-
tion. STRIDE (similarly LINDDUN) is a systematic approach that visits each
element in the DFD and is therefore subjected to the so called “threat explosion”
problem. In order to counter the explosion problem, some automation (namely
threat category generation) is already available by the MTM.8

The previously mentioned techniques require little additional effort since
quality assurance of outcomes is not prioritized. However, if the planned
resource investment is “large”, the organization is likely prepared for improving

7http://www.utdallas.edu/˜supakkul/tools/RE-Tools/
8https://www.microsoft.com/en-us/download/details.aspx?id=49168

http://www.utdallas.edu/~supakkul/tools/RE-Tools/
https://www.microsoft.com/en-us/download/details.aspx?id=49168

54 CHAPTER 2. PAPER A

an existing technique to obtain an “in-house” adapted version. We also consider
academic researchers looking for a starting point in their research to be prepared
for a “large” investment of resources. These techniques should be systematic
by construction (e.g. formal) but most importantly show potential for improve-
ment (e.g. technology improvement). In our opinion, two such techniques stand
out. First, the work of Berger et al. [45] presents an interesting semi-automated
technique for extracting threats from graphs based on rules matching certain
CAPEC and CWE entries. The authors argue that the existing notation for
DFDs needs to be extended with more security semantics. To this aim, Berger et
al. extend the notation by annotating flows with assets, security objectives and
type of communication (e.g. manual input). A more formal definition of security
semantics might assure the quality of outcomes explicitly, which is a promising
research direction. Further, querying graphs could be implemented using a dif-
ferent set of technologies. Therefore we believe that their approach is with some
effort adaptable to the needs of the organization. Second, Almorsy et al. [44]
have used Object Constraint Language (OCL) to define attack scenarios and se-
curity metrics. The authors developed an Eclipse plug-in that is able to perform
a trade-off analysis for different applications based on their signature evaluator.
Minimizing the architectural design space with such a semi-automated trade-off
analysis could indeed benefit organizations. For organizations that already
practice MDE, this approach could be tailored to the models they use. Yet
OCL constraints can only be as accurate as the model instances, therefore it
might be promising to pursue this research outside the space of MDE.

2.4 Discussion
In this section we first discuss the applicability of threat analysis techniques
in current trends in the software engineering community. We then proceed to
discuss the main findings of this study. In summary, the main findings are the
following:

(i) There is potential for improving threat analysis techniques in order to be
applicable in the context of current trends in software engineering,

(ii) there is a lack of Definition of Done in the threat analysis procedures,
(iii) there is a lack of quality assurance of outcomes,
(iv) the use of validation by illustration is predominant which is worrisome,
(v) the tools presented in the primary studies lack maturity and are not

always available.

2.4.1 Potential for improvement along current trends
Development and Operations (DevOps) is a software engineering practice that
aims at unifying software development and operations by means of higher
automation, measurement, sharing and promoting a specific culture in the
organization. Commonly adopted activities, such as continuous integration and
deployment cause the SDL to shorten considerably. Such organizations face
significant challenges in providing the required security of the product under the
rapid rate of software changes. Despite the immaturity of research in integrat-
ing security into DevOps, some efforts are summarized by Mohan et al. [155].
According to a recent survey performed with practitioners [156], the majority

2.4. DISCUSSION 55

of participants believe that other security practices are prevalent in DevOps or-
ganizations (i.e. security policies, manual security tests, security configuration).
To the best of our knowledge, threat analysis techniques have not been applied
in the context of DevOps. In our opinion, there are three areas where existing
techniques could be improved in order to cater to the needs of DevOps.

First, it is important that the information that was gained from threat anal-
ysis is automatically propagated to source code level (and vice-versa). It might
be beneficial to assure the traceability between the threats and corresponding
security requirements at the level of implementation. This might facilitate
a more efficient reuse of analysis outcomes in the fast changing code base.
Establishing a traceable link between architectural design and implementation
can be achieved with a “top-down” or “bottom-up” approach. In a “top-down”
approach, the architectural design decisions need to be annotated in the source
code (e.g. as presented by Abi-Antoun and Barnes [157]). Such annotations
may have to be added manually by developers themselves, which could render
the technique unreliable. Therefore, there are existing approaches to extract
the architecture from the code base (i.e. Software Architecture Reconstruction
(SAR)) by employing dynamic and/or static reverse engineering techniques (e.g.
as presented by Granchelli et al. [158]). To the best of our knowledge, the ex-
isting tools supporting SAR have limitations and are not commonly applied to
practice. From a usability perspective, practices such as continuous deployment
cause uncertainty in the security implications of modified code base. For in-
stance, it would be beneficial for developers to get instant feedback on how their
contribution impacts the security of the code base (e.g. one threat is mitigated).

Second, the existing techniques would benefit from guidelines of how to
compose the analysis outcomes. In practice, the software systems under analysis
are too large and complex to be analyzed at once. Therefore, organizations are
forced to scope the system into sub-systems and assign the analysis to several
teams of experts to be analyzed simultaneously. As a results, border elements
are either analyzed multiple times, or overlooked. One possible solution could
be to scope the system according to assets. In this case, elements handling cer-
tain assets would be analyzed together in an end-to-end manner. To facilitate
the composability of analysis outcomes, a level of formalism could be beneficial.
For example, taint analysis has been used to analyze applications in order to
present potentially malicious data flows to the human analyst. The analyst (or
automated malware detection tool) is able to decide whether particular flows con-
stitute a policy violation. For instance, Arzt et al. [96] present a flow-sensitive
taint analysis tool for Android applications. One possible research direction
could be in using hybrid taint analysis techniques on architectural models.

Third, the analysis performed for one subsystem is related to security as-
sumptions, which may not be in line with the security assumptions of another
subsystem. Further, threats with high impacts to the organization are typically
prioritized. Threat prioritization is commonly still performed manually, which
demands a lot of resources. Therefore, existing analysis techniques need to
invest in impact analysis automation.

The literature states that some Agile practices such as Extreme Program-
ming (XP) are not suitable for high-reliability requirements [159]. Similarly to
DevOps, agile development practices require highly automated threat analysis
techniques due to short sprints. Incidentally, start ups and Agile organizations

56 CHAPTER 2. PAPER A

adopting novel software engineering practices with less supervision are facing
similar challenges.

To conclude, in light of DevOps and Agile, where software development
is driven by change, there are three important aspect where existing analysis
techniques have yet to mature: (i) traceability of analysis in the code base, (ii)
composability of analysis outcomes and (iii) threat impact analysis automation.

2.4.2 Definition of Done (DoD)
Threat analysis is typically performed on a certain level of abstraction. The
level of abstraction is determined during the first session by system architects
and security experts. However, the analysts will typically also consider threats
on a lower level of abstraction, depending on their feasibility. It is up the
experts to determine which parts of the system should be analyzed in detail (on
a low abstraction level). Analysts are also faced with the challenge of deciding
how many identified threats (and at what level of abstraction) are enough for a
“good” analysis of a particular sub-system. In the Agile community, a so called
Definition of Done (DoD) is used for guiding Scrum teams to program more
efficiently and minimize technical debt. For example, checklists of test cases can
be used to define when a planed release is finished. We borrow this term from the
Agile community in order to depict the lack of similar practices in existing threat
analysis techniques. Defining when threat analysis can be concluded is still an
open question, which is today handled by practitioners in an ad-hoc manner.
Future work in this direction could have a large impact on the IoT domain, where
systems are composed of a large number of middle-ware components and devices.

2.4.3 Lack of precise guidelines
We have found that there is a lack of precisely defined rules for the analysis.
Some techniques operationalize rules for discovering threats and apply them
on a graph representing the architectural model (e.g. Almorsy et al. [44]). Yet,
the guidelines provided by authors for using their plug-in tool are vague and
informal. Moreover, El Ariss and Xu [128] refer to the process of construct-
ing attack trees as goal refinements that continue until the desired level of
abstraction is reached. Such guidelines are not precise and, for instance, do not
elaborate on how to identify AND/OR gates of attack trees. The lack of precise
guidelines effects the techniques’ ability to assure the quality of outcomes. We
have rarely found that the techniques have an explicit way of determining how
well the analysis was performed. While some approaches check for the number
of threats found in comparison to a base-line analysis, only a handful do so
systematically and automatically.

2.4.4 Generalization across domains
As shown in Table 2.8 the domains of validation vary, yet the majority are still
applied to Web-based systems. However, traditional threat analysis techniques
appear to be used in some form independently of the domain. In particu-
lar, we have discussed the commonly used varieties and combinations of (i)
STRIDE [9,105], (ii) attack trees [34], graphs and paths [121], (iii) MUCs [35]

2.4. DISCUSSION 57

(iv) problem frames [37] and threat patterns [124]. We argue that the aforemen-
tioned techniques are more general in nature and are therefore easily applicable
across domains. Unfortunately, we have found that most approaches are poorly
validated (using illustrations on toy examples) and the limited tool support
typically only aids the graphical representation of threats, rather than the
analysis of threats. The lack of validation across different domains questions
the applicability of analysis techniques to current trends in software engineering.
Internet of Things (IoT) and Cyber-Physical Systems (in particular automotive)
have recently been attracting a lot of attention.

IoT systems typically consist of a large amount of relatively small devices
and sensors with limited capabilities functioning as individual agents to achieve
goals. These interconnected devices are commonly analyzed individually, thus
their vulnerabilities are well known. Yet new vulnerabilities may arise once the
devices are connected. Therefore, a knowledge-base of threats and mitigations
to the known vulnerabilities could aid in automating threat analysis for IoT
devices and in maintaining the quality of analysis outcomes. Recent efforts
have proposed analysis approaches in the domain of IoT formalizing the cyber-
physical interactions including the malicious perspective. For instance, Mohsin
et al. [160] introduced a formal risk analysis framework based on probabilistic
model checking. Their framework is able to generate system threat models,
which are used to formally compute the likelihood and cost of attacks. Further,
Agadakos et al. [161] have introduced an approach for modeling cyber-physical
attack paths in IoT using Alloy. Their approach also ultimately generates
potential threats. Non-formal approaches supporting aspects of threat analysis
in IoT have also been proposed. For instance, Geneiatakis et al. [162] have
built an attacker model covering security and privacy threats in a typical IoT
system. Regarding usability Mavropoulos et al. [163] presented a tool that
supports security analysis of IoT systems. Rather than aiding the analysis
procedure, the tool helps to visualize assets, threats and mitigations.

In the automotive domain, Threat Analysis and Risk Assessment (TARA)
approaches are summarized by Macher et. al. [14]. TARAs summarized in this
review use traditional threat analysis approaches (such as CORAS [127] and
Attack trees [34]) as well as approaches tailored for the automotive (e.g. HEAV-
ENS [14] and SAHARA [164] are adaptations of STRIDE [9], EVITA [165] is
based on Attack trees [34], etc). Threat analysis of novel autonomous vehicles
is extremely lengthy and complex due to heavy safety and security requirements
and compliance to standards (e.g. ISO 26262 [166]). The automotive industry
to this day relies predominantly on threat analysis performed manually by
experts. Yet there is a need to semi-automate threat analysis procedures due
to scarce resources (i.e. security experts). A risk-centric light-weight threat
analysis technique could facilitate the identification of the most important
threats in only a few sessions. In order to ensure compliance to safety and
security standards, the problematic parts of the system still need to undergo
a systematic threats analysis.

In summary, significant effort has been invested in researching failure anal-
ysis in the domains of Cyber-Physical Systems (e.g. Martins et al. [167]), IoT
and automotive due to the required compliance to safety standards. There-
fore, mature hazard analysis (safety) techniques have already been established
(e.g. failure mode and effects analysis (FMEA) [168] and fault tree analysis

58 CHAPTER 2. PAPER A

(FTA) [169]). On the other hand, there seems to have been less focus on threat
analysis techniques, particularly in Agile development and DevOps, where
security is often not a business priority.

2.4.5 Ease of adoption
In the space of threat analysis approaches, tools have been used for three
main purposes: i) partially automating the analysis procedure, ii) graphically
representing threats to the system and (iii) facilitating the analysis execution
(i.e. helping the analyst to follow the procedure).

Semi-automated approaches utilize tools for the purpose of automating a
part of the analysis procedure (Such as Berger et al. [45], Almorsy et al. [44]
and Whittle et al. [102]). For instance, Whittle et al. [102] extended an existing
tool in order to automatically weave mitigation scenarios into a set of core
behavior scenarios. The authors are able to then generate a new set of finite
state machines including both the initial behavior and the behavior including
the mitigations. Finally, they execute the attack behavior on the new set of
finite state machines to determine the success of the attack.

Manual threat analysis approaches are supported by tools for the purpose
of retaining the structure of the analysis technique. For example, MUC (and
MUC maps [141]) are a form of templates used in the process of analysis. The
tools supporting threat analysis with MUCs only provide the required elements
to model the misuse, such as graphical elements to represent attackers with
an empty template for defining their abilities. Meanwhile threat identification
is not supported by tools and is considered a brainstorming task. Similarly,
Microsoft Threat Modeling Tool9 provides the visual elements (e.g. boxes,
arrows, ellipses, etc.) needed to create DFDs. To some extent, this tool also
facilitates the proper execution of the analysis, as it generates categories of
threats for each DFD element. The generated categories guide the analyst
through the analysis procedure of the technique. However, threat categories
generated based on the threat-to-element mapping table only provide a hint of
what type of threats could be identified. Similarly, the open source SeaSponge10

threat modeling tool primarily serves as a graphical aid to represent threats on
a system model. Some primary studies present tools whose purpose is both to
aid automation of analysis and provide graphical representation. For instance,
Sheyner et al. [47,153] present a tool for generating and analyzing attack graphs.

Tools serving the sole purpose of graphical representation are fairly straight
forward to use just by drag-and-dropping elements on an empty canvas. Anyone
with basic computer skills could easily use them. However, such graphical tools
do not support threat identification and prioritization. The correctness and
completeness of the results submitted by an engineer using such tools is not
assured. One could argue that more expertise is required for the proper ex-
ecution of the analysis using tools that only aid the graphical representation of
threats. Our assessment suggests that tools supported by knowledge-base could
to some extent leverage the security (and domain) expertise required for threat
analysis. Further, introducing quality assurance features is very important for
a novice analyst. Finally, partial automation could help speed up the analysis

9https://www.microsoft.com/en-us/download/details.aspx?id=49168
10https://github.com/mozilla/seasponge

2.5. THREATS TO VALIDITY 59

to facilitate efficient training of junior analysts. Several primary studies have
the potential to be extended with tool support also targeting engineers, namely
Berger et al., Almorsy et al. [44], Chen et al. [121], KAOS [138–140], Halkidis et
al. [135], LINDDUN [11], STRIDE [9, 105]. In summary, tool support seems to
be a common trend in the primary studies, yet tool proposals are preliminary
with limited validation.

2.5 Threats to validity
We consider internal and external threats to validity, as defined in [170].
Considering that substantial work was done by a single researcher, we consider
a risk of subjectivity as an internal threat to the validity of this study. The
bias introduced by the first author was mitigated by including random quality
controls into the review process, particularly during the selection of primary
studies and data extraction.

Furthermore, in this work we restrict our search of the literature by consid-
ering only top venues available in the digital libraries mentioned in Section 2.2.2.
Consequently, we raise the risk of considering a non-representative subset of
the relevant existing literature, thus harming the validity of our conclusions.
However, as per focusing the search on top venues, we are confident that the
selected papers represent the most influential work done in the area of secure
design in software engineering.

In general, the validity of results of systematic literature reviews depend
heavily on the external validity of the selected studies. We attempted to
mitigate this issue by adopting a conservative exclusion criteria, disregarding
grey literature papers, position papers and short papers (< 3 pages). Finally,
due to resource limitations, not all aspects could be extracted from the data. For
instance, further investigations could have been made regarding the learnability
in relation to tool support of the identified threat analysis techniques.

2.6 Related work
To the best of our knowledge this is the only systematic literature review on
threat analysis techniques. However, recently Cheung [104] has contributed
with a brief literature review of 8 threat analysis techniques. The main purpose
of this work was to identify the added value and impact of adopting threat
analysis techniques to cyber-physical systems of public water infrastructures.
The author summarizes a subset of the primary studies analyzed in this work.

Threat analysis is used for the main purpose of security requirement elicita-
tion or refinement. Hence, security requirements engineering approaches may
include aspects of threat analysis. We continue to address the related work in
the areas of security requirements engineering and risk analysis and assessment.

2.6.1 Security requirements engineering
Mellado et al. [171] performed a systematic literature review concerning security
requirements engineering methodologies, processes, frameworks and techniques.
The authors selected 51 primary studies to investigate. Some of these studies are

60 CHAPTER 2. PAPER A

overlapping with our selection of primary studies (namely [172], [134], [35] and
[102]). Among assessing the selected studies based on a smaller set of criteria,
the authors additionally present the integration of primary studies with security
standards. Our work could also be extended to include the integration of
primary studies with security standards, which would further aid practitioners.

Similarly, Salini et al. [173] have published a survey on security requirements
engineering approaches. The authors present and compare SRE issues and
methods. Additionally, the authors stress the importance of threat analysis
in the early stages of software development. Yet, this survey focused on re-
viewing SRE frameworks and processes (e.g. Security Quality Requirements
Engineering methodology (SQUARE) and Security Requirements Engineering
Process (SREP)).

Further, Fabian et al. [174] contributed with a conceptual framework for
SRE with a strong focus on security requirements elicitation and analysis.
The authors use the proposed framework to compare several SRE approaches.
Similar to our study, Fabian et al. also investigate problem frames and other
UML-based modeling approaches. Additionally, the authors also assess the
quality of outcomes for the selected studies. In contrast to this study, the
authors perform an unsystematic comparison of SRE methods, as opposed to
a systematic comparison of threat analysis techniques.

Munante et al. [175] have performed a review of SRE methods with a focus
on risk analysis and model-driven engineering (MDE). The purpose of their work
was to identify which SRE methods are compatible with existing risk analysis
and MDE approaches. To this aim, Munante et al. have analyzed the existing
work and concluded that KAOS and Secure i* are the most compatible SRE
methods with a model-driven approach. They also concluded that extending
them with risk analysis concepts is feasible. Despite the overlap in primary
studies of this work, Munante et al. have based their analysis on a smaller set
of assessment criteria and have done so unsystematically.

Daramola et al. [176] have published a comparative review on i*-based and
use case-based security modeling approaches. Their main findings show that
both categories of approaches show conceptual similarities in the modeling
aspects and method process. They also found several differences between both
categories of approaches (namely, representational, supported activities and
techniques, quality of outcomes and tool support).

Kriaa et al. [177] have performed a survey of approaches combining safety
and security for industrial control systems. The authors contribute with
highlighting the main commonalities, differences and interconnections between
safety and security in industrial control systems. A subset of the reviewed
approaches overlap with our primary studies (namely, CORAS, MUC). Their
review also considers Failure Mode and Effects Analysis (FMEA), Failure
Mode, Vulnerabilities and Effect Analysis (FMVEA), Fault Tree Analysis
(FTA), which are based on attack trees. In contrast to their work, this study
only investigates threat analysis techniques from the security perspective.

2.6.2 Risk analysis and assessment
Latif et al. [178] present a systematic literature review in the field of cloud
computing with a focus on risk assessment. The purpose of their work was

2.7. CONCLUSIONS AND FUTURE WORK 61

to categorize the existing approaches and explore which areas need further
investigation. The authors selected 31 primary studies and have looked into
the existing risks in cloud computing from the perspective of a customer and a
provider. Their main finding is that topics such as data security and privacy
are widely investigated, whereas physical and organizational security, have
received less attention. However, their literature review is narrowly scoped only
to one domain and does not assess the characteristics of the selected works.

Cherdantseva et al. [179] present a state-of-the-art review of the literature on
cyber security risk assessment methods for SCADA systems. The authors have
selected and examined 24 risk assessment methods. They provide descriptions of
the methods and assess them with an elaborated criteria. Among other methods,
the review also includes attack trees, petri net analysis, attack and defense
modeling and CORAS. Interestingly, the authors propose several challenges for
future work, some of which are in line with the findings of this work, namely (i)
need for improving the validation of methods (ii) overcoming the attack-failure
orientation (in this work referred to as determining the stopping condition),
(iii) lack of tool support. Yet, their review has a strong focus on risk assessment
methods in the context of SCADA systems.

Dubois et al. [180] have contributed with a systematic approach to define
a domain model of information system, which is used to compare, select of
improve security risk management methods. The authors provide a literature
review as part of their study, which also include threat analysis approaches
CORAS, OCTAVE and Common Criteria. Yet, this study contributes with an
ontology, rather then systematically reviewing the literature.

Raspotnig et al. [103] have compared risk identification techniques for safety
and security requirements. The purpose of their work was to investigate whether
and how the techniques can mutually strengthen each other. Among other
methods, the authors also assess attack trees, MUC and KAOS. Similar to this
study, the authors also look into stakeholders (in this study target audience) of
the selected methods. One of their main findings was that security techniques
can be strengthened by including better stakeholders and communication
descriptions, while the safety techniques can benefit from a tighter integration
between the risk identification and development processes. However, this study
does not look into safety or the interaction between safety and security.

2.7 Conclusions and future work
In this study, we have performed a systematic review of 26 threat analysis
approaches for secure software design. We have developed detailed assessment
criteria reflecting our research questions, presented in Section 2.3. Our search
strategy included an automatic search of three digital libraries and snowballing.
The data was extracted from the primary studies according to the assessment
criteria. The main findings of this study show that the existing techniques lack
in quality assurance of outcomes. Furthermore, the techniques lack maturity,
validation and tool support. Finally, they lack a clear definition of when the
analysis procedure is done.

As per the results discussed in Section 2.4, we identify three possible direc-
tions for future work. First, a connection (feedback) between the intended and

62 CHAPTER 2. PAPER A

actual architecture might aid in understanding the reality of analysis outcomes.
The quality of outcomes might only provide insightful speculations without a
clear link to the actual architecture. Further, other architectural design deci-
sions might have lead to architectural decay [181], causing a disconnection to
the “as-planned” security. To this aim, a formal language for design-level threat
analysis may aid in establishing the link to the extracted architecture (e.g.
by means of adapting dynamic and/or static reverse engineering approaches).
Regarding the Definition of Done, we believe that further investigations are
needed to understand the effects of composing analysis outcomes of subsystems.
To this aim, the assets play an important role as border elements between
subsystems (e.g. middle-ware). Further, a semi-automated way of composing
analysis outcomes might facilitate analysis reuse for products in different stages
of the SDL. Finally, in the context of DevOps and Agile, we believe that
analysis velocity is preferred over analysis systematicity. Therefore, an analysis
approach focusing on most important assets might be more appropriate for such
organizations. To this aim, we are evaluating a risk-first lightweight approach
for finding the most important threats sooner in the analysis procedure [182].

Chapter 3

Paper B

This chapter is based on
Two Architectural Threat Analysis Techniques

Compared,

written by
K. Tuma and R. Scandariato,

published in
Proceedings of the 12th European Conference on Software

Architecture (ECSA 2018), 2018.

63

Abstract
In an initial attempt to systematize the research field of architectural threat
analysis, this paper presents a comparative study of two threat analysis tech-
niques. In particular, the controlled experiment presented here compares two
variants of Microsoft’s STRIDE. The two variants differ in the way the analysis
is performed. In one case, each component of the software system is considered
in isolation and scrutinized for potential security threats. In the other case, the
analysis has a wider scope and considers the security threats that might occur in
a pair of interacting software components. The study compares the techniques
with respect to their effectiveness in finding security threats (benefits) as well
as the time that it takes to perform the analysis (cost). We also look into other
human aspects which are important for industrial adoption, like, for instance,
the perceived difficulty in learning and applying the techniques as well as the
overall preference of our experimental participants.

64 CHAPTER 3. PAPER B

3.1 Introduction
After decades of research and knowledge transfer in the field of “security
by design”, the software-intensive industries have absorbed the idea that
security needs to be addressed throughout the software development lifecycle.
Building Security In Maturity Model (BSIMM) [183] collects statistics from
95 companies and gauges their level of adoption with respect to several secure
software development techniques. According to the report, security-specific
code analysis techniques have successfully found their way into the industrial
practice, as two thirds of the surveyed companies adopt them routinely. In this
respect, the availability of well-known automated tools has helped significantly.
Architectural threat analysis is another important pillar of building more secure
software and the above-mentioned BSIMM report mentions that about one
third of the surveyed companies use architectural threat analysis techniques,
like Microsoft’s STRIDE [9], attack trees [39], Trike [148], CORAS [127],
PASTA [29], threat patterns [124], to cite a few.

Working in collaboration with our industrial partners from the automotive
industry, we noticed that Microsoft’s STRIDE is well-known and often used. In
particular, our partners use the so-called STRIDE-per-element version. In this
version, each component of the software system is considered in isolation and
scrutinized for potential security threats. However, practitioners advocate for
a threat analysis technique that allows them to analyze end-to-end scenarios
where several components interact (e.g., to provide a given functionality). In
this respect, the STRIDE-per-interaction variant could be more appropriate,
as in this variant the analysis has a slightly wider scope and considers the
security threats that might occur in a pair of interacting software components.
On the other hand, there are also truly end-to-end analysis techniques, like for
instance the one proposed by Tuma et al. [182]. From our perspective, it is
interesting to study how these alternative techniques differ across the spectrum
(analysis of isolated components vs analysis of pair-wise interactions vs analysis
of end-to-end scenarios) in terms of performance. In essence, which approach to
threat analysis produces more results in a faster way? Consequently, this study
focuses on the differences between the analysis of isolated components and the
analysis of pair-wise interactions. In current work, we are also comparing the
analysis of isolated components with the analysis of end-to-end scenarios.

In the latest publication by Shostack [9] describing Microsoft’s STRIDE, the
author describes two variants that are dubbed ‘STRIDE per element’ (analysis
of isolated components) and ‘STRIDE per interaction’ (analysis of pair-wise
interactions). A more detailed description of the two is provided in Section
3.2. In our study, we divide our participants (110 master students) into two
treatment groups (Element vs Interaction), each using one of the two
variants of STRIDE to analyze the architectural design of an Internet-of-Things
system. For replication purposes of this study, we have created a companion
web-site [184], where all the material used during the experiment is available.
The study analyzes and compares the effectiveness of the two variants in
unearthing security treats (benefits) as well as the time that it takes to perform
the analysis (cost). We also look into other human aspects which are important
to adoption, like the perceived difficulty in learning and applying the techniques
as well as the overall preference of our participants.

3.2. TREATMENTS 65

Figure 3.1: A high-level DFD of the experimental object.

The rest of the paper is organized as follows. Section 3.2 provides a primer
on the STRIDE variants. Section 3.3 describes the experiment and states
the research hypotheses. Section 3.4 presents the results, while Section 3.5
discusses them. The threats to validity are listed in Section 3.6. Section 3.7
discusses the related work and Section 3.8 presents the concluding remarks.

3.2 Treatments
STRIDE is a threat analysis approach developed to help people identify the
types of attacks their software systems are exposed to, especially because of
design-level flaws. The name itself is an acronym that stands for the threat
categories of Spoofing, Tampering, Repudiation, Information Disclosure, Denial
of Service and Elevation of Privilege. For the definition of threat categories,
we refer the reader to the documentation of STRIDE [9].

The analysis is based on a graphical representation of the system architecture
as a Data Flow Diagram (DFD). As shown in Figure 3.1, a DFD represents how
information moves around in a software-based system. The diagram consists of
processes (active entities), data flows (exchanged info), external entities (e.g.,
users or 3rd parties), data stores (e.g., file system) and trust boundaries.

The first step in applying the STRIDE methodology is to create a DFD
using the available system documentation. The second step is a systematic
exploration of the DFD graph in order to identify the threats. The two STRIDE
variants differ in how this exploration is carried out.

STRIDE per element. Using this approach, the analyst visits every ele-
ment in the diagram (e.g., starting in the top-left corner). For each element
type, STRIDE advises looking into a subset of threat categories. To this aim,
STRIDE provides a table mapping element types to threat categories. For
instance, the Sensor in Figure 3.1 is an external entity, therefore according to
STRIDE, the analyst should look into Spoofing and Repudiation threats. For
each pair of element type and threat category STRIDE also provides a catalog
of example threats that can be used for inspiration by the analyst. With
reference to the Sensor, one provided example threat for spoofing a hardware
device is IP spoofing.

STRIDE per interaction. This technique adopts an approach of system-
atically visiting the interactions in a DFD. Interactions are patterns of DFD
elements connected via data flows. The analyst has to first identify the inter-

66 CHAPTER 3. PAPER B

actions. For instance, “Sensor sends sensor data to Gateway” is a match for
the above-mentioned interaction. For each type of interaction STRIDE again
advises looking into a subset of threat categories and provides a catalog of
example threats. For example, when an external entity is passing input to a
process, the analyst is advised to look into Spoofing and Repudiation threats.
If there is no logging in place, the Gateway is able to deny having received
sensitive information from the Sensor.

3.3 The experiment
This section presents the design of a controlled experiment, conducted with
participants in an academic setting.

3.3.1 Experimental object
As depicted in Figure 3.1, the Home Monitoring System (HomeSys) is a system
for remote monitoring of residential homes. The purpose of this system is to
provide necessary tools for customers to automatically receive and manage
notifications about critical events in their homes. The system consists of a
smart home gateway which communicates with sensors and actuators and a
cloud system which collects data from the gateways and offers a dashboard to
the customers. Sensors are analog or digital hardware devices that produce
measurements and send them to the gateway. This system includes sensors
that detect temperature, humidity, smoke, etc. Actuators are hardware devices
that can receive commands from the gateway, like for instance, taking a picture,
activating a buzzer or flicking a switch. The gateway is a hardware device which
relays measurements to the cloud (via a 3G or WiFi network) and manages
the actuators in the residency. The HomeSys cloud is a software system that
communicates with the gateways and provides services for the customers, as
well the operators of the system.

The system documentation (about 30 pages) includes (1) the description of
the problem domain with scenarios, (2) the requirements of the system and (3)
a hierarchical architectural description documented in UML. For instance, the
documentation includes a UML deployment diagram. The complete description
of the system is available with the experimental material [184]. The participants
worked on the HomeSys system throughout the entire course before entering
the experiment. Therefore, they were very familiar with the object of the
experiment and had enough knowledge about the system to understand the
problem and complete their task.

3.3.2 Participants
The participants of this study are 110 first-year master students of Software
Engineering, attending a course on “Advanced Software Architecture”, taught
by the experimenters. In order to gather sufficient data, we have repeated
the experiment for two consecutive academic years (2016 and 2017). The
participants performed the assigned tasks in teams. Each year, the participants
were randomly grouped into teams of about 4 students and assigned one analysis

3.3. THE EXPERIMENT 67

Table 3.1: Answers to the entry questionnaire.

Questions and answers [%]

1. Do you have any working experience in software development outside the university?
Yes (63) No (37)

2. How would you describe your working experience outside the university?
Profit (39) Non-profit (8) Both (27) NA (26)

3. How would you rate your level of expertise as a programmer?
Very insufficient (1) Limited (17) Adequate (58) Advanced (24)

4. How would you rate your level of familiarity with software design, including the use
of UML?
Very insufficient (2) Limited (33) Adequate (63) Advanced (2)

5. How would you rate your level of expertise in security?
Very insufficient (16) Limited (65) Adequate (16) Advanced (3)

techniques (i.e., treatment groups). In total, we have assigned 14 teams to the
Element and 13 teams to the Interaction treatment.

We have collected information with a short questionnaire before the study
took place to investigate the background of the participants. As shown in Ta-
ble 3.1, it included questions about participants’ work experience and perceived
familiarity with task-related concepts. Most participants have had previous
experience in software development outside the university and consider to have
adequate knowledge about software design and programming. A large majority
of the participants are able to use UML, which is relevant as the study object
is documented in such language. The course does not require background
knowledge of information security, hence the participants consider to have
limited expertise in this area, as expected.

3.3.3 Task
The teams were presented with the same task on the same experimental object.
The task was divided into two sub-tasks: participants were asked to (1) build
a DFD based on the provided architectural documentation and (2) analyze the
DFD according to the assigned technique.

During the training, participants were provided with guidelines for creating
the DFD. First, they had to create a DFD by mapping the nodes from a
given deployment diagram into DFD elements. Second, the participants had
to use the rest of the documentation (e.g., component and sequence diagrams)
to refine the DFD and identify the data flows. The details of training are
available online [184].

The second sub-task required a systematic analysis of the DFD according
to the techniques described in Section 3.2. The analysis results had to be
documented in a report and submitted electronically. The report had to contain
a list of identified threats and corresponding descriptions. Threat descriptions
were made according to a provided template (available online [184]). The
purpose of the template is to simplify and standardize the analysis of the
reports. Note that the task has been performed during a supervised lab session.
In the lab, the teams were instructed to keep an informal log of the identified
threats (lab notes). The preparation of the official report had to be done after
the supervised lab. However, we have monitored that the reports did not contain

68 CHAPTER 3. PAPER B

more threats with respect to the work done in the lab (e.g., by taking snapshots
in the lab). The snapshots taken during the lab were compared with the final
report to capture any threats identified outside the supervised lab. We have
not recorded any discrepancies between the snapshots and the reported threats.

Finally, we asked the teams to keep track of the time they spent. To this aim,
the teams were instructed to use an online time-tracking tool (www.toggl.com)
and submitted their time-sheets electronically at the end of the supervised lab.

3.3.4 Execution of the study
The experiment is positioned at the end of a course on software architecture.
The topic covered in the experiment aligns with the course content. Participa-
tion in the study contributes to the teaching objectives of the course, hence
participants were highly motivated. For more details about the experimental
material please refer to the companion web site [184].

Entry questionnaire. A few weeks before the beginning of the study, the
participants have been asked to fill in a brief questionnaire about their knowledge
and background (see Section 3.3.2).

Training. As part of training for the experiment, the participants attended
2 lectures (mandatory 4 hours of training). In the first lecture (2 hours) the
participants got an introduction to secure design and the use of the DFD
notation. The lecture also included a practical exercise on how to build a
DFD for a system of similar size as HomeSys. For the second lecture (2 hours)
participants were split according to their assigned treatment group. Each group
received a dedicated lecture explaining the philosophy of STRIDE specific to
their treatment group. In addition, participants received only documentation
specific to their treatment group. This was done in order to limit the problem
of treatment diffusion. An overview of the HomeSys documentation was also
given in the second lecture. The students were more than familiar with the
system, but the experimenters wanted to be sure that they would be able to
navigate the documentation without hiccups. Finally, in a lab session preceding
the experiment, the participants were familiarized with the time-keeping tool.

Supervised lab. The experiment took place in one lab session of 4 hours.
The session was supervised by the authors and two teaching assistants. At
the beginning of the lab, the authors explained the experimental protocol to
the participants, e.g., by summarizing the task, mentioning all the provided
material, and reminding the participants about the time-tracking tool. Each
team was provided with a printed copy of task description, the relevant book
chapters, and the documentation of HomeSys. The teams performed the
assigned task and kept track of their work by writing lab notes.

Report. The participants were given about a week to write a report doc-
umenting the threats they had found during the lab. To this aim, they used
their lab notes. Each report contained a figure of the DFD and a list of
identified threats, where each threat was documented according to a provided
template [184]. In particular, each threat is described with a title, a position
in the DFD where the threat is located, a threat category (STRIDE), re-
quired attacker capabilities, and a detailed description of the threat itself. The
participants were also asked to document their assumptions about the system.

Exit questionnaire. At the end of the lab session, the participants were

www.toggl.com

3.3. THE EXPERIMENT 69

asked to fill in an exit questionnaire. Access to the questionnaire was open for
a week after the lab session had finished, during which time a few reminders
were sent by email. As discussed later, this questionnaire is meant to validate
some experimental assumptions (e.g., the participants understood the task and
were adequately prepared to carry it out) and to collect additional information
about the treatments (e.g., the perceived difficulty of the tasks).

3.3.5 Measures
We have collected the measure of effort (in minutes) spent by each team on
both sub-tasks (DFD creation and threat analysis).

We have also collected the measure of true positives (TP), false positives
(FP) and false negatives (FN). True positives are reported threats that are
assessed as correct by the experimenters in light of the analyzed DFD and the
security assumptions made by the team. False positives are wrong or unrealistic
threats reported by the team. Finally, false negatives are threats that are
present in the analyzed system but had gone unnoticed by the team.

In order to record the correct threats a “ground truth” has been created
by the first author. Incidentally, we decided to let the teams produce their
DFD as this activity is an integral part of threat analysis in practice. Ergo,
the teams have analyzed slightly different DFDs. A ground truth was built for
each team to ensure a correct evaluation. For each report, the ground truth
was used to identify the correct, incorrect and overlooked threats. In particular,
a threat is considered correct if (1) it is identified at the correct location, (2)
it is correctly categorized, (3) it has some impact on system assets, (4) the
description of the threat agent is correct and (5) the description provided by
the team is realistic from a security perspective and does not contradict their
assumptions. Oftentimes the teams reported the same threat more than once,
using a different title. A threat (either correct or incorrect) that is identified
more than once is marked as a duplicate. Note that duplicated threats are
intentionally not considered as TP or FP .

3.3.6 Hypothesis
We have adopted a standard design for a comparative study of one inde-
pendent variable with two values, i.e., the two treatments of Element and
Interaction. Our study investigates three dependent variables: productivity,
precision, and recall. In this study we define the productivity (Prod) of a team
as the number of correct threats (TP) per time unit. For each team, precision
(P) is the percentage of correctly identified threats out of the total number of
reported threats (TP/(TP + FP)). Recall (R) is the percentage of correctly
identified threats out of the total number of existing threats (TP/(TP +FN)).

We use the Wilcoxon statistical test to determine whether there is a sta-
tistical difference in the three dependent variables across the two treatment
groups. Accordingly, the null hypotheses are as follows:

HP rod
0 : There is no statistically significant location shift between the average

productivity of the two treatment groups.
HP

0 : There is no statistically significant location shift between the average
precision of the two treatment groups.

70 CHAPTER 3. PAPER B

●

●

●

●

●

DFD Analyze Total

10
0

20
0

30
0

40
0

Ti
m

e
(m

in
ut

es
)

●

●

●

●

●

10
0

20
0

30
0

40
0

●

●

10
0

20
0

30
0

40
0 Element

Interaction

●

●●

●

●

0
10

20
30

40
50

Th
re

at
s

TP FP FN

Element
Interaction

Figure 3.2: Average time per sub-task and total time of treatment groups (left)
and true positives, false positives, and false negatives (right).

HR
0 : There is no statistically significant location shift between the average

recall of the two treatment groups.

3.4 Results
In this section, we present the results of the study and answer to research
questions. All statistical tests have been performed using the two-sample
Wilcoxon test of independence with a level of significance equal to 0.05.

3.4.1 True positives, false positives, and false negatives
Figure 3.2 reports the number of TP , FP and FN per treatment group. We
have observed slightly better averages for the Element group, compared to
the Interaction. Namely, the TP is higher (Element: 14.3, Interaction:
11.6), the average number of FP is lower (Element: 14.2, Interaction: 15)
and the average number of FN is also lower (Element: 8.8, Interaction:
11.8). However, the analysis shows that there are no significant differences
between the amount of TP , FP and FN across treatments groups.

The average number of TP , FP and FN per threat category is depicted in
Figure 3.3. Overall, both treatment groups visibly focused less on Repudiation
and Elevation of Privilege threats compared to other threat categories. A
statistical analysis shows that there are significant differences between the TP
of the Denial of Service (p-value = 00.02) and Tampering (p-value = 00.007)
threat categories across treatments. For the Denial of Service threat category,
the Element treatment group identified on average more TP (statistically
significant, p-value = 00.02) and less FN (not significant). For the Tampering
threat category, the Element treatment group identified on average less FN ,
more TP (statistically significant, p-value = 00.007), and less FP . This might
be due to the two methods providing different mapping tables (from DFD
to threat categories [9]). The Interaction has a lower rate of mappings
to the Denial of Service threat category (8/72 = 11% vs 3/20 = 15%). We
have also computed the recall when the Denial of Service threats are removed.
The results stay similar to what is reported in Figure 3.4, i.e., the median
recall is not “driven” by the Denial of Service category. Incidentally, there is
a similar situation in the mappings for the Tampering category (3/72 = 4%

3.4. RESULTS 71

TP FN

S

M
ea

n
th

re
at

s
(E

le
m

en
t)

0
1

2
3

4
5

TP FN

T

0
1

2
3

4
5

TP FN

R

0
1

2
3

4
5

TP FN

I

0
1

2
3

4
5

TP FN

D

0
1

2
3

4
5

TP FN

E

0
1

2
3

4
5

TP FN

S

M
ea

n
th

re
at

s
(In

te
ra

ct
io

n)

0
1

2
3

4
5

TP FN

T

0
1

2
3

4
5

TP FN

R

0
1

2
3

4
5

TP FN

I

0
1

2
3

4
5

TP FN

D

0
1

2
3

4
5

TP FN

E

0
1

2
3

4
5

Figure 3.3: The mean number of identified threats for per element (top) and
per interaction treatment (bottom).

vs 3/20 = 15%). Identified threats from other categories do not differ across
treatment groups.

3.4.2 RQ1: Productivity
As shown in Figure 3.2, the average time spent by the teams performing
STRIDE-per-element is 3.5 hours, whereas the average time spent per teams
performing STRIDE-per-interaction is 3.95 hours (not statistically significant).
There is a noticeable difference between time spent on the sub-tasks, with the
analysis time being dominant. When looking at differences across the treat-
ments, the Element group was on average faster in performing both sub-tasks
(not statistically significant). It is interesting to notice, that even though both
treatments followed the same guidelines for DFD creation, the Interaction
group created on average DFDs with more elements (discussed in Section 3.5).

The overall productivity of a technique depends on the amount of correctly
identified threats (TP). The average productivity of the Element group is
4.35 TP/h.1 The Interaction group turned out to be less productive (3.27
TP/h). However, the difference is not statistically significant and, hence, the
null hypothesis HP rod

0 cannot be discarded.
As a possible explanation for lower productivity of the Interaction treat-

ment, we highlight that the documentation of the STRIDE-per-interaction
variant is more complex with regard to mapping threats to interactions. As
mentioned by Shostack, “STRIDE-per-interaction is too complex to use with-
out a reference chart handy” [9]. Such a reference chart was available to the
participants, yet the complexity might still have been too high.

72 CHAPTER 3. PAPER B

●

●

●

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Total S T R I D E

Element
Interaction

R
ec
al
l

●

●●●0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Total S T R I D E

Element
Interaction

Pr
ec
is
io
n

Figure 3.4: Precision (left) and recall (right) aggregated across threat categories.

3.4.3 RQ2: Precision
Figure 3.4 presents the precision (i.e., the correctness of analysis) of the two
treatment groups as an aggregate (left-hand side) and across each individual
threat category (right). Overall, the mean precision is 0.60 for both treatment
groups. Therefore, null hypothesis HP

0 cannot be rejected. We have also
analyzed the differences in precision within threat categories. There is a statis-
tically significant difference in the precision of Tampering threats (Element:
0.58, Interaction: 0.81, p-value = 00.027). A difference can also be observed
for the Denial of Service category (not statistically significant).

3.4.4 RQ3: Recall
Shostack states that the “STRIDE-per-interaction leads to the same number
of threats as STRIDE-per-element” [9]. Yet in our study, the number of
reported threats was higher for the Element treatment, especially the number
of FP (see Figure 3.2). Figure 3.4 presents the recall (i.e., completeness of
analysis) of the two treatment groups as aggregate (left-hand side) and across
each individual threat category (right). The average recall for the Element
treatment is 0.62, whereas the average recall of the Interaction is 0.49.
The difference is statistically significant (p-value = 0.028). Therefore, null
hypothesis HR

0 can be rejected. We have also analyzed the differences within
each threat category and found a statistically significant difference in the recall
of the Denial of Service category (Element: 0.55, Interaction: 0.34, p-value
= 00.014). One possible explanation relates to the fact that the Element
group tends to create smaller DFDs, as discussed in Section 3.5. Alternatively,
the difference could be linked to the fact that the threat examples in the
documentation are more extensive in case of the Element treatment and the
documentation of the Interaction treatment is more complex to navigate (as
mentioned in Section 3.4.2). These are interesting hypotheses for future studies.

3.4.5 Exit questionnaire
In summary, the two treatments displayed a statistically significant difference
only with respect to recall, with the Element group reporting more complete
results (13% better). It is also important to appreciate how the two variants
are perceived by the participants. This could have an impact on the successful

1Scandariato et al. [10] reported an average productivity of 1.8 T P/h.

3.5. DISCUSSION 73

adoption of the technique and, hence, become a deciding factor beyond the
performance indicators investigated in the three research hypotheses.

To this aim, we asked the participants to fill in a questionnaire at the end
of the experiment. Due to space limitations, the questions and the answers are
not shown here. They are available on the companion web-site [184] under the
“Questionnaires” tab. To investigate differences across the treatment groups,
we have performed a Cochran-Mantel-Haenszel test (similar to the Chi-square
test) with a level of significance equal to 0.05.

In general, participants from both treatment groups agreed about having a
clear understanding of the task, though they were sufficiently prepared and
were familiar with the experimental object. Overall the task was not too
difficult, while the first sub-task of creating the DFD was perceived easier than
the second sub-task of analyzing the DFD (for both treatments). According to
the documentation, “STRIDE-per-element is a simplified approach designed
to be easily understood by the beginner” [9]. This implies that STRIDE-per-
interaction is perceived by Microsoft as the technique to be used in production.
However, according to our results, the techniques are the same (i.e. per element
is not simpler than per interaction) in terms of productivity and precision.
Concerning the learnability, the teams from both treatment groups agreed that
the techniques they used were easy to understand and learn (no significant
differences). Although the teams were given sufficient time to carry out the
task, both treatment groups perceived the techniques as lengthy and tedious.

The participants from both treatment groups mostly believed that 50-75%
of their identified threats were correct. This is a fairly accurate estimation
according to the observed precision in this study (0.6). Interestingly, partici-
pants were slightly less confident about the completeness of their analysis. The
aggregate recall over all teams (regardless of the treatment group) is 0.5 and
only less than half of the participants (47.7%) have this perception. Finally,
participants generally liked the technique they used but were not especially
fond of it either. No significant differences were observed across treatments.

3.5 Discussion
DFD. The participants followed precise guidelines for DFD creation [184].
As such, the created DFDs have limited variability as well as consistent quality,
e.g., we did not find many mistakes in the DFDs. In this study, we have made
a deliberate choice to minimize the influence of the DFD creation (common to
both treatments) and focus on the alternative techniques of analyzing the DFD
(the key difference between the treatments). Figure 3.5 depicts the number
of DFD elements in the models created by the teams. On average, the teams
created DFDs with about 26 data flows, 6 processes, 4 data stores, 3 external
entities, and 3 trust boundaries. A few differences can be noted. On average,
we observed a smaller number of DFD elements in the Element group (37.4)
compared to the Interaction group (41.9). This difference is consistent across
the different element types, yet not statistically significant.

Mistakes. As reported in Figure 3.5, the teams sometimes reported several
threats more than once. Duplicated threats are considered to slow down the

74 CHAPTER 3. PAPER B

●

●●
●0

10
20

30
40

50

Total DF PN DS EE TB

Element
Interaction

D
up

lic
at

es ●

●

●

0
5

10
15

20
25

30

N
um

be
r o

f d
up

lic
at

es

Total S T R I D E

Element
Interaction

N
um

be
r o

f D
FD

 e
le

m
en

ts

Figure 3.5: The average number of DFD elements (DF=data flows, PN=process
nodes, DS=data stores, EE=external entity, TB=trust boundaries) (left) and
the average number of duplicated threats (right).

analysis process, especially during threat prioritization. Note that the results
about productivity (see Section 3.4.2) are not affected by duplicates, as they
were discarded.

Most commonly, threats are duplicated due to (i) threat ‘fabrication’ or
(ii) a misuse of the reduction technique. We consider threat fabrication as
mistakenly identifying threats in order to achieve complete coverage of the
STRIDE category mapping table. Proposed by STRIDE, threat reduction is
a technique that aims towards minimizing the number of DFD elements that
have to be analyzed. In particular, the reduction enables coupling the elements
of the same type in order to analyze them at once. In other words, the threats
identified for one DFD element may apply to other elements of the same type.

About 30% of all reported threats were duplicated. Of those, the majority
belonged to the Element group (65%). The mean number of duplicated
threats identified by the Element teams is bigger (6) than the Interaction
teams (5) (not statistically significant). However, there is a significant difference
in the amount of Tampering duplicates across treatments (Element: 6.27,
Interaction: 1.67, p-value = 0.042). Incidentally, we also observed more
Spoofing duplicates in the Interaction treatment. A possible explanation for
fewer duplicates in the Interaction group is that the notion of interaction
patterns might lend itself useful to a correct use of the reduction technique.

Interestingly, we observed that most teams correctly identified more outsider
threats than insider threats. Very often, the reported insider threats were just
unrealistic and assessed as false positives.

Analysis focus. Overall (including duplicated threats and FP), both treat-
ment groups have focused their analysis on ‘border’ elements of the system,
as well as the data flows that pierce through trust boundaries. The reports
of the Element treatment group contain more threats to processes, external
entities, and data stores compared to threats to data flows. In contrast, the
reports of the Interaction treatment group contain more threats to data
flows compared to threats to other types of DFD elements. In general, all
teams were more likely to identify correct threats to the data flows crossing
a trust boundary. This confirms the usefulness of using trust boundaries to
focus the attention of the analyst. However, there is a lack of precise guidelines
for how and where trust boundaries should be placed, as our teams showed

3.6. THREATS TO VALIDITY 75

uncertainties in this regard. The teams were more likely to falsely identify
threats (FP) to processes and data stores. The participants found the most
commonly known threats (e.g., phishing, SQL injection, stealing for creden-
tials or account). Coincidentally, these are more commonly identified on data
flows. Correctly identifying a Tampering threat to a data store within system
boundaries would mean finding a way to by-pass the system access control
or even overcome obstacles like file-locking or other system defenses. This
kind of threat requires correct assumptions and more security background.
Unfortunately, most teams did not document many (if any) assumptions.

3.6 Threats to validity
The time spent for performing the task was measured by the participants them-
selves. To mitigate this threat, we have continuously reminded the participants
to pause and continue measuring time during breaks. The amount of work that
was reported was consistent with the reported time, which indicates that this
is a minor concern. The use of student participants instead of professionals
is a potential issue threatening the generalization of results. This kind of pop-
ulation sampling is sometimes referred to as convenience sampling [185]. It is
considered controversial due to certain drawbacks [186]. However, studies have
shown [187–189] that the differences between the performance of professionals
and graduate students are often limited. The experiments were conducted by
using teams of 3-5 students, which threatens the generalization of results to a sin-
gle analyst. Nonetheless, the state-of-the-art [9,105,190] advises sound-boarding
the analysis with a team of experts in the industrial setting as well. This is what
happens in the medium-to-large companies we collaborate with. Finally, the re-
sults of this study may be influenced by the experimental object and in turn, may
not be applicable to a system of different complexity or from a different domain.

Possible mistakes might have been made during the assessment of the reports
and during the creation of the ground truth. In order to avoid over-loading the
participants and make them tired, the supervised experiment was performed
in a span of 4 hours. Additional time was given for documenting the identified
threats outside the supervised lab. The teams were not monitored after the
experiment has ended, however, we have made sure that the final report
included only the threats in the lab notes (e.g., by taking snapshots in the lab).

3.7 Related work
McGraw conducted a study including 95 well-known companies [183]. The
study analyzes the security practices that are in place in the companies. The
BSIMM model does not mention STRIDE per se, rather it highlights the
importance of threat analysis. Microsoft has not published evidence of the
effectiveness of the STRIDE variants analyzed in this paper. Guidelines, best
practices, and shortcomings are discussed, yet there is no evidence about how
the two approaches differ in terms of performance [9].

Scandariato et al. [10] have analyzed a previous version of STRIDE-per-
element and evaluated the productivity, precision, and recall of the technique
in an academic setting. The purpose of their descriptive study was to provide

76 CHAPTER 3. PAPER B

an evidence-based evaluation of the effectiveness of STRIDE. Our study, on
the other hand, provides a comparative evaluation (by means of a controlled
experiment) of the two latest approaches for STRIDE. Also, our study has a
larger number of participants and uses a larger object. We remark that our
study has some discrepancies with respect to the observed productivity (4.35 in
our study vs. 1.8 threats per hour), precision (0.6 vs. 0.81), and recall (0.62 vs.
0.36). However, a direct comparison is not entirely possible, as the two studies
use different versions of STRIDE-per-element (our being the most up-to-date).

A privacy oriented analysis methodology (LINDDUN [11]) has been evalu-
ated with 3 descriptive studies [191]. LINDDUN is inspired by STRIDE and is
complementary to it. Both techniques start from a representation of a system,
which is described as a DFD. Similarly, the authors assess the productivity,
precision (correctness) and recall (completeness) of the technique, as well as
its usability.

Labunets et al [192] have performed an empirical comparison of two risk-
oriented threat analysis techniques by means of a controlled experiment with
students. The aim of the study was to compare the effectiveness and perception
of a visual technique with a textual technique. The main findings were that the
visual method is more effective for identifying threats than the textual one, while
the textual method is slightly more effective for eliciting security requirements.

The work of Karpati, Sindre, Opdahl, and others provide experimental
comparisons of several techniques. Opdahl et al. [193] measure the effectiveness,
coverage and the perception of the techniques. Karpati et al. [194] present an
experimental evaluation of MUC Map diagrams focusing on identification of not
only vulnerabilities but also mitigations. Finally, Karpati et al. [195] have ex-
perimentally compared MUCs with mal-activity diagrams in terms of efficiency.

Diallo et al. [196] conducted a descriptive comparison of MUCs, attack trees,
and Common Criteria [197]. The authors have applied these approaches to the
same problem and discuss their observations about the individual technique’s
strengths and weaknesses. An interesting evaluation of the reusability of threat
models (MUC stubs and MUC Maps diagrams, both coupled with attack trees)
is presented by Meland et al. [198]. The authors conducted an experiment in-
cluding seven professional software developers. The study suggests that overall,
the productivity is improved by reusing threat models for both techniques.

3.8 Conclusion
This study has presented an empirical comparison of two variants of a popular
threat analysis technique. The comparison has been performed in-vitro by
means of a controlled experiment with master students. As presented in
Section 3.4, this work provides reproducible analysis and observations about
the effectiveness of applying both techniques, in terms of productivity, precision
and recall. In summary, with the type of population used in this study (non-
experts), our study observed better results with the STRIDE-per-element
variant. For instance, STRIDE-per-element yielded 1 additional threat per
hour in terms of productivity, with no consequences on the average correctness
of the results (i.e., same precision). The proponents of STRIDE have claimed
that “STRIDE-per-interaction leads to the same number of threats as STRIDE-

3.8. CONCLUSION 77

per-element” [9]. However, in this study, we have observed a statistically
significant higher level of completeness in the results returned by the teams
using STRIDE-per-element. This is possibly influenced by the tendency of the
STRIDE-per-interaction group to create larger DFD models, which might not
be necessarily needed. Another explanation is related to the more complex
documentation in the case of the Interaction treatment. As security budgets
are quite tight in companies, knowing that one variant might be more productive
is a useful piece of information.

This work calls for future studies about the effectiveness of the threat
analysis variants, especially with more expert analysts. In particular, we are
planning a case study in two companies where the local, per-element analysis is
compared to a global, end-to-end analysis. Furthermore, it would be beneficial
to study the effect on the importance (in terms of risk) of the discovered threats,
as well as the quality of the of security requirements that are derived from them.

78 CHAPTER 3. PAPER B

Chapter 4

Paper C

This chapter is based on
Towards security threats that matter,

written by
K. Tuma, R. Scandariato, M. Widman, C. Sandberg,

published in
Proceedings of the International Workshop on the Security of

Industrial Control Systems and Cyber-Physical Systems
(CyberICPS 2017), 2017.

79

Abstract
Architectural threat analysis is a pillar of security by design and is routinely
performed in companies. STRIDE is a well-known technique that is predomi-
nantly used to this aim. This technique aims towards maximizing completeness
of discovered threats and leads to discovering a large number of threats. Many
of them are eventually ranked with the lowest importance during the prioritiza-
tion process, which takes place after the threat elicitation. While low-priority
threats are often ignored later on, the analyst has spent significant time in
eliciting them, which is highly inefficient. Experience in large companies shows
that there is a shortage of security experts, which have limited time when
analyzing architectural designs. Therefore, there is a need for a more efficient
use of the allocated resources. This paper attempts to mitigate the problem by
introducing a novel approach consisting of a risk-first, end-to-end asset analysis.
Our approach enriches the architectural model used during the threat analysis,
with a particular focus on representing security assumptions and constraints
about the solution space. This richer set of information is leveraged during the
architectural threat analysis in order to apply the necessary abstractions, which
result in a lower number of significant threats. We illustrate our approach by
applying it on an architecture originating from the automotive industry.

80 CHAPTER 4. PAPER C

4.1 Introduction
In an ever more complex Cyber-Physical System (CPS) domain, security and
trust management are becoming burdensome for many organizations. New
software products and frameworks are intended to support functionalities that
handle privacy and security of sensitive data. Furthermore, the longevity of a
CPS product is typically high (e.g., in the automotive, 25 years), which makes
building a secure solution a substantial challenge. Security by design requires
addressing security-related issues throughout the entire software development
life-cycle. This paper focuses on the early stage of conceptualization of a
software system, i.e., the architectural design. Planning for security in early
design phases helps designers to steer the product development in a direction
where threat mitigations are possible.

In particular, threat analysis is a method that strives towards validating
the software architecture and discovering potential design weaknesses. This
validation technique is an essential pillar of software security, together with other
code-level verification techniques like static analysis and security testing [199].
For instance, Microsoft’s STRIDE is a well-known and used technique to
perform architectural threat analysis [9]. STRIDE and similar techniques
(like LINDDUN [191]) follow the so-called software-centric approach. Such
techniques center the analysis around a model of the system that resembles a
graph and represents the software components (both computation and storage
nodes) and the information exchanged between them (edges). From a syntactical
perspective, Data Flow Diagrams (or DFD) are often used to represent such
models. According to STRIDE the analysis proceeds by exploring the diagram
and discovering several potential threats at each location. On one hand, this way
of performing a security assessment has the benefit of being systematic. On the
other hand, the analysis is prone to being repetitive and very time consuming.
Empirical evidence shows that with only a handful of software components, the
analysis can result in the discovery of 50 to 60 security threats, which means
a scale factor of 10 [10]. This is known as the ‘threat explosion’ problem.

The experience of our industrial partners is that, trading systematicity for
a timely discovery of most important threats is advantageous. As resources are
scarce and time is limited, systematicity is considered an obstacle if it leads
to ‘wasting’ time with security threats that are deemed as not important later
on. We also learned that in the early design phase, stakeholders reason about
security with a close eye on system assets. Rather than focusing the analysis on
the software assets (e.g., software components and data stores), analysts observe
information assets and how they move through the system. They do that by
analyzing end-to-end usage scenarios which involve a certain information asset
and trace the software components that are involved with exchanging, using
and storing that particular asset. At each encountered software component,
they reason about the potential threats to the asset.

In this paper we synthesize the lessons learned while analyzing the threats
in an architecture of a connected vehicle and suggest a novel way of approaching
threat analysis. We propose an architectural view for security that is based
on DFDs, extended with end-to-end flows representing the information assets
in the system. In our enriched model, assets are also annotated with their
importance and with security objectives associated with them (e.g., confidential-

4.2. RUNNING EXAMPLE 81

ity). The extended model also includes additional information that is routinely
used during the threat analysis process, namely, security assumptions. The
extended notation is used to guide the threat analysis and reduce the amount
of ‘uninteresting’ threats that are found. For instance, if an end-to-end flow
refers to an information asset that needs to stay confidential, it would be better
to focus on disclosure threats (which directly impact confidentiality) rather
than on denial-of-service threats (which impact availability instead).

In order to illustrate our approach, the first author applied it on the architec-
ture provided in the context of the HoliSec project [200] on security of connected
vehicles. The results of the analysis have been submitted to a domain expert
with extensive security background (the third author). Our discussions con-
cluded that our approach indeed led to the identification of valid threats, likely
to have the most impact to the organization in reality. Clearly, the obtained
results serve as a proof of concept and are a stepping stone for future work.

The remainder of this paper is structured as follows. Section 4.2 describes
the running example. Section 4.3 presents the extended notation and the
needs of the analyst, Section 4.4 presents the guidelines for abstracting the
architectural model (DFD) applied to the running example and Section 4.5
identifies the related work. Finally, Section 4.6 includes a discussion and future
work, followed by concluding remarks, presented in Section 4.7.

4.2 Running example
In this section we describe the architecture of a vehicle as shown in Figure 4.1.
This example is used throughout the paper to illustrate the benefits of our
proposed approach. Due to non-disclosure concerns, the example is realistic but
does not correspond to an architecture of an existing product on the market.

Modern vehicles are highly complex systems, comprised of hundreds of differ-
ent components called Electronic Control Units (ECUs), which are responsible
for one or more particular features of the vehicle. Individual ECUs are connected
to a Controller Area Network (CAN) bus, which is currently the most used in-
vehicle communication protocol and also a very common target of attack [201].

As depicted in Figure 4.1(a), the architecture is composed of several ECUs,
sensors and actuators exchanging data between each other following a specific
communication protocol. The communication between individual components
is further specified with a communication matrix (not shown here) of signals,
source and receiver components, networks used and type of communication (e.g.,
broadcast or unicast). For instance, the warning light signals are broadcast
on networks CAN 2, Eth 2, Eth 3 and Eth 4. The architecture in Figure 4.1(a)
supports a number of functional scenarios, which are described below. Fig-
ure 4.1(b) presents a DFD, derived from the architectural information and the
assets described in the scenarios. Notice that functional elements represent
processes, while data stores represent the places where information is stored
for later retrieval. Everything that is outside of the system (e.g., 3rd party
systems) is modeled by means of external entities. The arrows represent the
exchange of information.

Scenario 1: Set-up diagnostics connection and read emission data. A
logging functionality collects information about the vehicle over time, such as

82 CHAPTER 4. PAPER C

(a) Architecture of in-vehicle communication.

Conn
GW

Algorithms
Services
Diag. Key
Emission
Data

R/W

VS

BC

GPS

WL

Feed

Edge
ECU

V2X Brake
ECU

Engine
ECU

Driver
Control

Vehicle
ECU

Speed
Sensor

Cam

Repair
Tool

GPS
Sensor

External
entity

Process Data store

Annotated flow
VS

VSC

RED

GPS

GPS

Warning
Light

Button

WL

WLED
WL

RED

ED

VSC

Driver
Display

WL

(b) DFD of the architecture.

Figure 4.1: The running example

the emissions data and the GPS position. In order for the data to be collected,
the Repair Tool sends the emission data request signal (RED) via the Edge
ECU to Engine ECU over the OBD network. The Engine ECU then sends the
emission data response signal (ED), including the requested information, back
to the external interactor.

Scenario 2: Extended vehicle warning Vehicle to X (V2X) communication
allows the exchange of information between the vehicle and the road infras-
tructure or other vehicles. If the warning light button is active, the vehicle
forwards the warning light status (WL) from the Vehicle ECU to the Driver
Control. The latter sends it over the Eth 4 network to the Driver Display in
order to alert the driver. The warning light status is then sent over the Eth 1
network to the Edge ECU, which, in turn, collects the current GPS position

4.3. AN EXTENDED DFD NOTATION 83

Tx, App

Vehicle
ECU

T, A

VLAN3

VS: I(H)DA1 DP1

CAN2

VS: I(H)

WL: I(L)

CAN2

Button WL: I(L)DA2

DP2

Edge
ECU

WL: I(L) WL: I(L)ETH3 ETH4

Cam

Feed: I(H)

DA3

DP3

VLAN3

Communication channel

Asset: objective (priority)

Asset source

Asset target

Tx, App

Driver
Control

Driver
Display

DP Domain property

DA Domain assumption

Tx/App/Arch

Process
Feasible layers of
mitigation: Transport
(Tx), Application (App),
Architectural refactoring
(Arch)

Vehicle
Speed sensor

Tx

Figure 4.2: The extended DFD notation for an end-to-end, asset-centric flow.

from the Connectivity Gateway. The information (both WL status and GPS
position) is sent to the Edge ECU via the Driver Control ECU on networks
CAN 2 and Eth 3. Finally, both the GPS location and the warning light status
are broadcast via the V2X ECU.

Scenario 3: Using city traffic collision prevention to brake for pedestrians
in the trajectory of the vehicle This scenario describes the situation where city
traffic collision prevention is used to slow down or stop the vehicle if pedestrians
appear in the vehicles’ trajectory. The camera sensor sends live video feed
to the Driver Control ECU, which analyses it for upcoming obstacles. The
Driver Control ECU also receives information about the vehicle speed (VS)
from the Vehicle ECU. If a possible collision is detected, the Driver Control
ECU generates a vehicle speed change request (VSC) and sends it to the Engine
ECU, which orderly sends a brake command (BC) to the Brake ECU.

4.3 An extended DFD notation
Security experts performing threat analysis are aware of the threat explosion
problem and try to counter it by making abstractions. For instance, analysts
often group seemingly homogeneous elements of the DFD with respect to the
type of threats they are subject too. In STRIDE, this technique is called
reduction [190]. To make any sort of abstractions possible, candidate elements
need to be closely inspected in order to decide whether an abstraction will
overall have a negative or a positive outcome. This decision should be an
intelligent choice, supported by evidence in the architecture. In order to
trace assets through the system, we propose to use asset-centric partial DFDs.
Figure 4.2 shows a DFD for the vehicle speed (VS) asset. Notice that the DFD
is a slice of the overall model presented in Figure 4.1(b).

Security objectives and priorities. Each data flow is marked with the
asset that is being transported (also part of the standard DFD notation). We
extend the notation by introducing clear markers of where an asset is generated

84 CHAPTER 4. PAPER C

(asset source) and where it is consumed (asset target). If assets are to be
protected, they have to be analyzed from the source all the way to the target
architectural element. Additionally, the asset is labeled with one or more
security objectives: confidentiality (C), integrity (I), availability (A). Security
objectives are used to focus the identification of important threats during threat
analysis. Often, the analysis spans across several months with brief sessions
every week or two. After a few sessions, it is easy to forget about the analysis
constraints (e.g., ‘focus on confidentiality only’) if they are not clearly visible
in the diagram. The asset is also ear-marked with a priority label that signifies
the importance of the objective. We use the values of low (L), medium (M)
and high (H). These do not express the importance of the asset as such, but
rather the impact of a compromised asset objective. This information helps
calibrate the depth of the analysis to come.

Security assumptions and properties (at flows). During threat anal-
ysis, assumptions are made in order to assess whether threats are feasible in the
underlying architecture. For instance, the integrity of VS can be compromised
if it is transported in clear and if the attacker has access to the transport
medium. Together with the domain expert, the analyst may choose to make
an assumption about an existing security mechanism in place that protects VS
against tampering threats. When making assumptions about the system, the
analysts need to be very careful not to make optimistic assumptions, which
can lead to overlooked threats. A false assumption about the security of a GPS
sensor can, for example, result in overlooking spoofing threats. On the other
hand, not making any assumptions can make the analysis highly inefficient and
result in the elicitation of irrelevant threats. Today, assumptions are sometimes
still documented separately in an informal way. Considering that they are easily
forgettable, they must be made visible in the model, right where they are needed.

In this paper, we distinguish between domain assumptions and domain
properties, as described by Van Lamsweerde [202]. Domain properties are used
to describe non disputable facts about the domain, whereas domain assumptions
are statements about the domain that may or may not hold. For instance, “It
is infeasible to encrypt the CAN bus” is a domain property. This is something
that we can not change about the domain. On the other hand, “The CAN bus
is not accessible to the attacker” is a typical domain assumption.

In Figure 4.2 there is one assumption and one property on top of the flow
going from vehicle speed sensor to Vehicle ECU. The domain assumption DA1
is the following: “The vehicle speed sensor is a Commercial-Off-The-Shelf
product and is working securely.” The domain property DP1 placed on the
same flow is the following: “There is a feasible mitigation solution on the
transport layer for the flow between the vehicle speed sensor and the Vehicle
ECU.” The assumption DA1 and property DP1 are later on used to argue
about the security of assets on the flow, which is discussed when abstracting
the diagram. The limited layers of mitigation solutions are annotated within
processes and external entities with capital letters.

Finally, there is one property that is so important (especially in embedded
systems) that it gets its own annotation. We refer to the representation of
the communication channel for each data flow. The communication channel
explicitly shows which network the data flow and the corresponding asset
belong to. A regular DFD notation does not include the topological behavior

4.3. AN EXTENDED DFD NOTATION 85

gathered in the communication matrix. Keeping that information visible is
important, because most domain properties and assumptions that have to be
made are about network and protocol capabilities.

Forward assumptions (at processes). Processes are ear-marked with
this annotation, which is important in the perspective of simplifying the
analysis process, as described in Section 4.4. In essence, we suggest that
it is useful to explore the space of possible solutions which are realistic to
implement in terms of mitigation mechanisms. For example, some ECUs
include a Hardware Security Model (HSM), which provides transport layer
encryption. This exploration needs to be done before the threat analysis starts.
As the same threats start to appear more often (e.g., the assessment of the
integrity of the VS is generating a lot of tampering threats along the asset
flow), it is more efficient to turn a forward assumption into a domain property
(i.e., mandate the adoption of a certain security mechanism, like turning on
the encryption) and stop bothering about that asset all together. This kind of
of backtracking in the analysis process is supported by the extended notation.

Our work differentiates between threat mitigation solutions on different
layers of abstraction: transport (Tx), application (App) and architectural
(Arch) layer. For instance, on the transport layer, symmetric cryptography
may be used to establish a secure communication protocol between one of the
sensors connected to the vehicle and the receiving ECU. On the other hand,
an application layer mitigation solution would include an application layer
firewall that inspects packets traveling to and from the Repair Tool in a remote
diagnostic scenario. On the architectural layer, security mitigation techniques
include architectural re-factoring, where possible design decisions are required
to modify the system architecture. Note that middle-ware solutions, such as
message queues, are also grouped as architectural layer mitigation techniques.

In addition, while the focus of abstraction is on a single end-to-end flow,
elements indirectly involved in the end-to-end flow are still represented in the
diagram. The reason for including additional elements is because abstractions
directly effect neighbor elements. Consider what happens if two processes are
folded. One part of the end-to-end flow gets successfully abstracted. However,
there might have been other flows between that were unaccounted for. Neglect-
ing the neighboring elements can increase the risk of missing important threats
during the analysis. We use a different color for such elements (gray) to stress
this point.

In summary, there are three important actors that participate in the process
of obtaining the extended DFD. Figure 4.3 shows how a domain and a security
expert work together with a business expert to gather the necessary information.
The eDFD is built after having analyzed the problem and solution space. First,
the domain expert defines an architectural model including security objectives,
purpose and priority of main assets in the system. To that end, the business
expert contributes with determining the priorities of assets, while the security
expert helps define the objectives. The architectural model is comprised of
a structural, behavioral and a topological view. This architecture is used as
input to create a DFD. After the DFD defined, all three actors contribute to
asset analysis, where they reason around the problem space. Asset analysis
is performed in an iterative manner. Each asset is first identified, then the
source and target components of the asset are located. Although the domain

86 CHAPTER 4. PAPER C

Figure 4.3: Roles and responsibilities for extending the DFD using the proposed
approach.

and security experts are mostly active in this phase, the business expert
contributes to the discussion from a financial perspective. The asset is then
traced in the DFD, where all components affiliated with the asset are marked
accordingly. Asset analysis activities are repeated for all assets identified within
user scenarios (behavioral view). At this point, the partially extended DFD
includes security objectives, priorities and security assumptions at flows, put
forward in Section 4.3 In order to complete the eDFD, forward assumptions
about processes need to be made. When making forward assumptions about
security mitigations, the actors discuss the so called solution space. To wit,
domain and security experts limit possible mitigations in accordance with
domain specific constraints and possibilities. Lastly, using the complete eDFD,
the security expert makes use of the guidelines to abstract the DFD. Section 4.4
discusses the model abstraction activity and how it counters the threat explosion.
Threat analysis begins after the DFD is abstracted.

4.4 Handling the threat explosion
In this section we discuss how our approach tackles the previously mentioned
problem of the ‘threat explosion’, i.e., when too many (often irrelevant) threats
are found when STRIDE is applied to a medium-to-large DFD. With the support
of the running example, we illustrate how the abstraction is performed before
the threat analysis and how the effort reduction is supported during the analysis.

4.4.1 Abstraction before threat analysis
The first approach towards solving the problem is to reduce the number of DFD
elements (before the analysis starts) by means of heuristics. In such a manner
the model is simplified and consequently, the analysis produces less unimportant
threats. We have defined two initial guidelines for flow bundling and process
folding. To this aim, the extended notation introduced previously plays an
important role. The guidelines were obtained through iterative sound-boarding
with industrial partners while working on the architecture from Figure 4.1.
The reader should note that the guidelines are not meant to be a complete set
of criteria, but rather the result of our initial observations. Having said that,

4.4. HANDLING THE THREAT EXPLOSION 87

we defined two different sets of guidelines for components with either critical
or non-critical assets. For critical components, a more strict set of criteria is
used, while for non-critical components the criteria are somewhat loosened. In
this way, the abstraction is done in accordance with the “heat” of the system
(obtained from the asset analysis) in a each region.

Bundling data flows. We consider two or more data flows (arrows in a
DFD) between two processes, a process and an external entity or a process and
a data store. When bundling data flows, the highest security objective of assets
dictates the level of criticality. For non-critical assets, the corresponding data
flows must be associated to the same communication channel (e.g., CAN 1) for
the bundling to be possible. For instance, in Figure 4.1(b) the flows between
the Repair Tool and Edge ECU include assets that are not critical and they
are broadcast over the same network. Therefore, they can be bundled. After
bundling, the resulting data flow is annotated with a new name and the union
of security objectives from both bundled data flows. If the flows contain the
same security objective, the highest priority is included in the union.

If any of the data flows considered for bundling contains a high security
objective, the area is considered critical and additional criteria need to be
met. We must look at the end-to-end flows (as in Figure 4.2) for the involved
assets. These end-to-end flows must have either the same source, target or
both. Otherwise, if they have different source and target, the unaligned parts
of the end-to-end flows should not be critical. For instance, in Figure 4.2 the
data flow VS between Vehicle ECU and Driver Control ECU is marked with a
high-priority integrity objective, while WL has a low-priority integrity objective.
Therefore, this area in the architecture is considered critical. Both VS and WL
data flows are broadcast on the same communication channel. The diagram
shows that the VS end-to-end flows goes from the Speed Sensor to the Driver
Control. The WL signal end-to-end flows goes from the Warning Light Button
(pressed by the driver) to the Driver Display. Therefore, the assets VS and WL
do not have the same source or target. Rather, they only align between the
Vehicle ECU and Driver Control. However, the criticality of the non aligned
parts is low. In conclusion, the data flows can be bundled according to the
more restrictive criteria.

Process folding. Candidate elements for process folding are two adjacent
processes. All flows between the candidate processes are considered when
determining the criticality of the region.

If the flows do not transport high-priority assets, the region is considered
as non-critical. Non-critical processes may be folded if (a) they are not near to
a trust boundary and (b) there is a mitigation in place (security assumption)
that ensures that at least one of the objectives for the surrounding flows is
covered. If a trust boundary is next to the considered region, the processes
are likely part of the attack surface and it is considered too risky to bundle
them, as relevant threats might be overlooked. In the example of Figure 4.2,
this guideline applies to the region containing the Driver Control and Driver
Display: there are no high priority assets broadcast on ETH 4 and the processes
are not near to a trust boundary. Hence, the two processes can be folded.

If any flow between the candidate processes contains a high security ob-
jective, the criteria are more restrictive. In addition to the above-mentioned
conditions, the processes (c) need to be “mounted” on the same communication

88 CHAPTER 4. PAPER C

Conn
GW

Algorithms
Services
Diag. Key
Emission
Data

R/W

VS: I(H)

GPS:
C(H), I(M)

WL: I(L)

Feed: I(H)

Edge
ECU

V2X Brake
ECU

Engine
ECU

Driver
Control &
Display

Vehicle
ECU

Speed
Sensor

Cam

Repair
Tool

GPS
Sensor

VS & WL: I(H)

VSC & WL: I(H)

RED & ED:
I(M), A(L) RED & ED & VSC:

I(H), A(L)

GPS & WL:
C(H), I(M)

GPS: C(H), I(M)

Warning
Light

Button

BC: I(H)

Figure 4.4: The abstracted DFD after applying the guidelines.

channels and (d) there must be mitigations in place ensuring that all security
objectives over the flows are covered. Unfortunately, no such fold was possible
in the running example.

Figure 4.4 presents the results of the abstraction obtained by applying the
guidelines described in this section. Overall, the difference between the original
DFD (in Figure 4.1(b)) and the abstracted DFD (in Figure 4.4) lies in the
number of flows and processes. The abstracted DFD has 1 process less (Driver
Display) and 7 flows less compared to the initial DFD. The simplifications to
the model result in a reduced number of identified unimportant threats, as
further discussed in Section 4.4.3.

4.4.2 Effort reduction during threat analysis
Abstracting the architectural model before threat analysis can only take the
analyst so far. It is not only the number of DFD elements that makes threat
analysis time consuming, but also the type and amount of threat patterns that
must be considered for each element. However, the additional information
about the assets and the forward assumptions may also be used during the
analysis to guide the analyst towards the important threats, while omitting
the not important ones.

For instance, in Figure 4.4, the RED and ED flows have been bundled as a
result of the abstraction step. The assets on this bundled flow are ear-marked
with the integrity objective (medium priority) and the availability objective
(low priority). Therefore, the analyst can focus on the tampering and denial of
service threats, and ignore the information disclosure threats.1 As the priorities
are not high, the analyst also knows that it is not necessary to dig too deep
in the analysis process of this flow. In this respect, the analyst can bring
these risk considerations into the process of threat identification and leverage
them to reduce the effort spent analyzing this “cool” spot of the system. As a

1According to STRIDE, a data flow is subject to three types of threats: tampering (T),
information disclosure (I), and denial of service (D).

4.5. RELATED WORK 89

result of the analysis, we found two important threats on that particular flow:
physically damaging the OBD port and tampering with the ED signal before
it is displayed on the Repair Tool.

Another means of reducing the effort spent eliciting the threats is to use the
security assumptions during the threat analysis. For instance, let us suppose we
are analyzing the vehicle speed (VS) asset-centric flow described in Figure 4.2.
The asset is ear-marked with a high-priority integrity objective and, hence, the
analyst should carefully consider the potential tampering threats. However, Be-
cause of the domain assumption DA1 (“The speed sensor is working securely”)
and the domain property DP1 (“Transport-layer security is used between the
ECUs”), the tampering threats can be discarded altogether as they are non
interesting.

4.4.3 Effect of abstraction
The resulting abstracted DFD has been analyzed (by the first author) using
the off-the-shelf threat catalogs of STRIDE. This led to the identification of 15
threats, which are not presented here due to space constraints. To appreciate
the efficiency of our approach, we remark that a previous study [10] has shown
that according to the traditional STRIDE approach, the number of identified
threats from a DFD this size should have been around 100. The 15 identified
threats have been reviewed by a security expert (the third author) who routinely
performs the threat analysis of automotive systems. The validity and relevance
of the identified threats have been confirmed by the expert. Further the expert
confirmed that no relevant threats had gone unnoticed.

Our approach resulted in finding less threats because of two reasons. Pro-
cesses and flows are the elements that are the main cause of threat explosion in
a DFD. First, together they make up a large number of architectural elements.
Second, they are prone to many types of attacks and, hence, have to be analyzed
for several threat categories. Out of a total of six threat categories, STRIDE
mandates the consideration of three categories for flows and of all six categories
for processes. It is apparent that reducing the number of processes and flows
in the DFD can help govern the threat explosion problem. Second, a further re-
duction of effort is due to a more focused analysis, as explained in Section 4.4.2.

4.5 Related work
Significant work has been done in the area of threat analysis and risk assessment
(TARA) methods in the automotive domain. Macher et al. [14] recently
performed a review of TARA methods in the automotive context. In their main
findings, the authors identify most applicable TARA methods for early phase
analysis, which closely relate to our approach. The EVITA [203] method is an
adaptation of the ISO 26262 HAZOP analysis for security engineering. The
method considers potential threats for particular features from the functional
perspective by developing attack trees and eventually discovering worse case
scenarios. Even though the method employs leveled qualitative risk assessment,
no effort is mentioned regarding attack tree minimization. HEAVENS security
model [204] analyzes threats based on the STRIDE threat modeling approach
and ranks them by assessing the risk with determining the threat, the impact

90 CHAPTER 4. PAPER C

and finally the security level. In contrast to our approach, HEAVENS model is
oriented towards ranking the threats only after identifying them. SAHARA [164]
method combines the automotive HARA safety analysis with the STRIDE
approach to discover impacts of security threats in the safety analysis. The
focus of SAHARA lies in understanding the relationship between security
threats and safety implications, whereas our work focuses on security aspects
only. A security analysis of several applications within a Connected Vehicle
Reference Architecture (CVRIA) has been performed by ITERIS and is available
online [205]. The published documents include a CIA asset analysis of the V2X
communications, while our work focuses on the in-vehicle communications.

Beyond the domain of automotive software, other asset- or software-centric
threat modeling approaches are relevant to our work. STRIDE [9] is a pop-
ular threat modeling approach, which is based on DFDs. The methodology
is comprised of 7 steps: define users and realistic use scenarios, gather as-
sumptions, construct a DFD diagram of the system, map STRIDE to DFD
element types, refine threats, document the threats, assign priority via risk
analysis (to counter threat explosion problem) and select mitigations associated
to threats. In STRIDE, threat prioritization according to risk value is done
after the threat elicitation. Additionally, although STRIDE suggests to start
by gathering the security assumptions, no explicit guidance is provided on
how to represent and use them in the threat analysis process. Similar to
STRIDE, TRIKE [148] is a software-centric methodology. TRIKE includes
the identification of assets and actors and offers tool support for attack tree
and graph generation. CORAS [25] is an asset-centric methodology for risk
analysis consists of a language, a tool and a method. The methodology employs
CORAS threat diagrams that describe the threats, vulnerabilities, scenarios
and incidents of relevance for the risk in question. Similarly to the aforemen-
tioned CORAS methodology, PASTA [29] is an asset-centric, risk-based threat
modeling methodology. In PASTA threats are analyzed with the help of use
cases and Data Flow Diagrams (DFDs). Further steps are taken for detailed
analysis, namely the use of attack trees and abuse cases.

Looking towards recent initiatives to automate threat modeling, our ap-
proach relates to the work on extracting threats from DFDs by J. Berger et
al. [45]. Similarly to our work, the authors introduce additional semantics,
including the topological behavior. Furthermore, they also develop a set of guide-
lines, which are used to build a threat model of the architecture. However, these
rules are used to discover only cataloged threats and do not aim to handle threat
explosion. Perhaps more importantly, our approach differs by analyzing end-to-
end assets which, in turn, drives the model abstraction and threat reduction.

Interesting work has been done by Rauter et al. [206] in developing a metric
that quantifies software components by their ability to access assets. By doing
so, the authors are also able to identify critical areas in the software architecture
and consider those for a detailed threat analysis. However, they do not discuss
the specifics of how threat analysis techniques benefit from their architectural
risk assessment method. Our work also relates to the automated software archi-
tecture risk analysis studied by Almorsy et al. [44]. The introduced approach is
accompanied by a tool and explores security risk analysis by means of formal-
ized signatures of security scenarios and metrics. Similarly, the authors develop
a risk-centric architectural analysis approach. However, their work focuses on

4.6. DISCUSSION AND LIMITATIONS 91

operationalizing attacks and security metrics to assess the risk level, instead
of aiming towards systematically identifying important threats. In addition,
the formalized signatures do not seem to consider end-to-end flows of assets.

We also identify several related approaches that could be grouped as attack-
centric threat analysis techniques. In these approaches, an explicit model of
the attacker is introduced and the analysis is performed from the perspec-
tive of an attacker. Examples of such techniques are anti-goals [139], misuse
cases [35], misuse case maps [145], abuse cases [137], abuse frames [38], and
attack trees [39,207].

4.6 Discussion and limitations
The process of creating the enriched model described in Section 4.3 results
in a deeper understanding of the system before threat analysis activities take
place. Not only does this contribute towards a common security awareness,
but it also enables the identification of realistic threats in the system. As
previously mentioned, one of the drawbacks of STRIDE is that the analysis of
DFD elements is performed in isolation. In contrast, attack strategies target
an asset and often affect a combination of elements. Our approach implicitly
considers all the model elements that are related to an asset, which contributes
towards detecting attack strategies earlier on in the software development
life-cycle. Most importantly, our approach is a step further towards optimizing
the effort spent on analyzing threats. This aspect is of primary importance in
the industry (especially for complex systems, like CPS) and is often overlooked
in the related work. Even though the guidelines are only initial observations,
they are synthesized in a domain-independent way, where the main role is
played by the semantics of end-to-end flows and not the domain-specific content.
Therefore, there is potential for generalizing the guidelines to domains outside
the scope of cyber-physical systems. In particular, domains where the software
architecture is comprised of different networks and communication protocols
may benefit from our approach (e.g., Microservice architecture). However,
more investigations have to be made in order to confirm this claim.

Our approach relies on the correctness of the domain assumptions and the
truthful representation of the domain properties. This means that the presence
of a domain expert is mandatory. Another draw back is that the approach
assumes that there are in fact non-critical areas in the architecture. If all the
candidate model elements for abstraction have high-priority security objectives,
the abstraction may result fewer simplifications, if any at all. Another problem
might arise once the amount of end-to-end flows increases. The guidelines
do not consider what happens when new scenarios are added. New scenarios
might bring along different assets that travel through the same communication
channels. As a result, successful abstractions have to be reconsidered. Some
of these problems could potentially be alleviated by a tool. In terms of
increasing the productivity, the application of guidelines for abstraction can
be (semi)automated. Such support may take advantage of our approach,
while enabling experts to freely move between abstractions during the analysis.
Working towards the automation of threat analysis also caters to security
related activities later in the product life-cycle. Notably, after implementation,

92 CHAPTER 4. PAPER C

the planned architecture comes seldom into question again. However, the
implemented architecture often differs from the planned architecture too much.
Checking for compliance is therefore a complex and important task. As part of
future work, we plan to explore ways to synchronize the extended DFDs and the
implemented architecture. Furthermore, we acknowledge that we have validated
the approach only by illustrating its potential on one simplified architecture.
In future work, we will systematically evaluate the benefits of our approach in
a series of comparative studies involving both students and industrial experts.

4.7 Conclusion
In this work, we presented a novel approach for a risk-first security analysis of
design artifacts. Without departing too much from well-known techniques like
STRIDE, our approach is focused on an end-to-end asset analysis and accommo-
dates forward reasoning on the constraints imposed by the solution space. Our
main contributions are (i) a notation to represent end-to-end asset flows and to
enrich the analysis models with important security assumptions, and (ii) a set of
guidelines for traversing the model and making suitable abstractions. The contri-
butions aim at mitigating the problem of threat explosion, commonly present in
STRIDE and other techniques. Additionally, the extended notation supports a
more appropriate representation of communication channels, which is valued in
the domain of Cyber-Physical Systems. We illustrated our approach by applying
it on a simplified system provided by industrial partners in the automotive do-
main. Preliminary results show that the analysis method indeed yields a reduced
number of low priority threats. In future work, we plan to extend the validation
of our approach and explore the opportunities for threat analysis automation.

Chapter 5

Paper D

This chapter is based on
Finding Security Threats That Matter: Two Industrial

Case Studies,

written by
K. Tuma, C. Sandberg, U. Thorsson, M. Widman, T. Herpel, and

R. Scandariato,

submitted to
Journal of Systems and Software (JSS), 2020.

93

Abstract
In the past decade, speed has become an essential trait of software development
(e.g., agile, continuous integration, DevOps, etc.) and any up-front inefficiency
is considered unaffordable time waster. Such a fast pace causes challenges
for architectural threat analysis. Leading techniques for threat analysis, like
STRIDE, have the advantage of being thorough and systematic. However, they
are not equipped to discern between important and less critical threats, while
the threats are being discovered. Consequently, many threats are discarded at
a later time, when their risk value is assessed. An alternative technique, called
eSTRIDE, promises to remove these inefficiencies by focusing the analysis on
the critical parts of the architecture. Yet, no empirical evidence exists about
the actual effect of trading off a bit of systematicity, which is a benefit of
STRIDE, for a more focused attention on high-priority threats, which is the
goal of eSTRIDE. This paper contributes with an empirical study comparing
and contrasting these two approaches in the context of two industrial case
studies. We have found that the two approaches are similar in terms of overall
productivity. However, participants using eSTRIDE found twice as many high-
priority threats. In addition, we found that, in the industrial setting, security
expertise may be traded for a faster-paced and less precise threat analysis.

94 CHAPTER 5. PAPER D

5.1 Introduction
Security-by-design techniques aim to avoid security pitfalls in software systems
early on, starting from the design phase, when the major development effort
is yet to come [5,190]. The intent is to cut the maintenance cost induced by
fixing security design flaws when it is too late. In this context, architectural
threat analysis is a common activity performed by experts (often manually) to
analyze the high-level design of a system for potential security issues related
to its assets of interest [208]. These threat analysis techniques are routinely
used in application domains where upfront design is still dominant, for instance
in safety-critical systems like automotive. For instance, Microsoft’s STRIDE
is a well-known threat analysis technique that is also used in the automotive
domain [9, 209]. This technique has the tendency to lead to the discovery of a
high volume of potential threats [10,210]. After the discovery phase, threats
are ranked according to their risk value, which is a combination of impact and
likelihood. As a result, many threats are later-on discarded due to their low
risk value, even though significant time went into their discovery. This is a clear
element of inefficiency, which is common to these family of so-called risk-last
approaches, where risk is considered only after the threats have been found.

In the past decade, speed has become an essential trait of software devel-
opment (e.g., agile, continuous integration, DevOps, etc.) and any up-front
inefficiency is considered unaffordable time waster. Consequently, such a fast
pace causes challenges for threat analysis [33]. Further, security expertise is
scarce in organizations and the time available from experts needs to be used in
an optimal way. Driven by these observations, in prior work we have defined
eSTRIDE, a risk-first threat analysis approach [182]. The core idea is to
enrich the analyzed model with risk-related information, so that the analysis
activity is more focused on the critical parts of the architecture. This would
lead to the early discovery of high-priority security threats, hence by-passing
threat prioritization all together. This seems promising for organizations where
development speed is key to surpassing the competition. Yet, no empirical
evidence exists about the actual effect of trading off a bit of systematicity (a
benefit of STRIDE) for a more focused attention on high-priority threats (the
goal of eSTRIDE). Could important threats go unnoticed? Are high-priority
threats being discovered faster? These and similar questions beg for an answer.

The purpose of this study is to gather empirical evidence about the simi-
larities and differences between a risk-last (STRIDE) and risk-first (eSTRIDE)
threat analysis technique (see Section 5.2) in an industrial setting. To this
aim, we conduct two case studies (see Section 5.3) with industrial participants
(15 in total) from two automotive organizations located in different countries.
Within each organization, we observe and compare two teams analyzing the
same system, where each team uses one of the two mentioned techniques.

The contributions of this work are three-fold. First, we try to understand
whether a risk-first technique leads to the discovery of more high-priority
threats and sooner, hence optimizing the time and effort spent in performing a
threat analysis. Second, we carry out a qualitative and quantitative comparison
of how the two techniques are performed, e.g., by looking at what activities are
more prevalent. This allows to identify key insights into the way teams work
when they use the two techniques and, accordingly, gauge the potential for

5.2. THE COMPARED TECHNIQUES 95

Table 5.1: Activities of Stride and eStride

Step Activity Stride eStride

Building Scope discussion ! !

diagram Drawing the DFD ! !

Model abstraction/refinement ! !

Asset analysis !

Extending the DFD !

Analyzing Diagram exploration Element by element Scenario-based
diagram Threat types considered Mapping table Pruned mapping table

Attack scenario development ! !

Threat feasibility discussion ! !

Threat reduction ! !

Threat prioritization !

Figure 5.1: The main steps of performing Stride

ECU

Mobile
app

WiFi
dongle

Get
SW

App
store

SW
storage

SWApp

Central Systems

External
Entity ProcessData

Store
Trust

Boundary
Data
Flow

DFD notation

SW

SWSW

S T R I D E
External Entity x x

Process x x x x x x

Data Flow x x x

Data Store x ? x x

Driver Fleet
tech.

Credentials

optimization. Third, we investigate the effect of security expertise on the use of
both techniques. As security expertise is a scarce commodity, it is interesting
to study whether less skilled teams could produce acceptable results with any
of the two techniques.

The results of this study (Section 5.4) show no differences in productivity and
timeliness of discovering high-priority security threats. But, we find differences
in analysis execution. Specifically, participants using the risk-first technique
found twice as many high-priority threats, developed detailed attack scenarios,
and discussed threat feasibility in greater detail. In comparison, participants
using the risk-last technique found more medium and low-priority threats. In ad-
dition, we find that security expertise may be traded for a faster-paced and less
precise threat analysis. The results are further discussed in Section 5.5 and their
validity is reproached in Section 5.7. We contextualize our results with respect to
the related literature in Section 5.6, and present our conclusions in Section 5.8.

96 CHAPTER 5. PAPER D

5.2 The compared techniques
Stride – STRIDE is a family of techniques developed by Microsoft to help
identify threats (e.g., potential attack scenarios) that software systems are
exposed to, especially because of design-level flaws. The name itself is an
acronym that stands for the threat categories of Spoofing, Tampering, Repudi-
ation, Information Disclosure, Denial of Service and Elevation of Privilege. For
the definition of threat categories, we refer the reader to the documentation
of STRIDE [9]. In particular, this study considers the ‘STRIDE per element’
variant (hereafter Stride).

Table 5.1 summarizes the activities performed during the analysis with
Stride. It is a model-based technique which starts with the creation of a
graphical representation of the software system under analysis, namely as a
Data Flow Diagram (DFD). Figure 5.1 shows a simplified DFD and how it is
used during Stride. We depict an industrial case from the automotive context
(also under analysis in this work) for a firmware update of an Electronic
control unit (ECU) in a truck. On a high-level, the driver (or technician)
connects their mobile device to a WiFi dongle in their vehicle, logs into the
Mobile app (installed on their device), gets the software from a remote software
repository and installs it on the ECU of their vehicle. Creating the DFD
typically involves discussing the scope of the analysis (i.e., defining the breadth
of analysis), drawing the diagram (e.g., on a board), abstracting or refining
the model (hence defining the granularity of the analysis), and so on. A DFD
represents how information moves across a software system and consists of
processes (active entities, like ‘Get SW’ in Figure 5.1), data flows (exchanged
info), external entities (e.g., ‘Driver’), data stores (e.g., ‘SW storage’), and,
optionally, trust boundaries (e.g., ‘Central Systems’).

The second phase in Stride is the systematic exploration of the DFD to
identify the threats. It involves several activities (see Table 5.1) which can be
roughly grouped into four steps (steps 1-4 in Figure 5.1).

First, the analysts explore the diagram one element at the time (step 1).
For each element type, STRIDE suggests to look into specific threat categories,
which is given by the so called threat-to-element mapping table (step 2 in
Figure 5.1). For instance, for external entities (e.g., ‘Driver’) the analysts are
suggested to only look for spoofing and repudiation threats. Next, the analysts
engage in a brainstorm to develop concrete attack scenarios, during which they
can use exemplary threats (of each category) for inspiration (step 3). Each
discovered threat must be discussed with respect to its feasibility in order to
determine its relevance. The relevant treats and discovered attack scenarios
are immediately documented. Sometimes, the same threats can be present at
multiple locations in the diagram (e.g., an information disclosure threat on all
data flows that are not encrypted). In such situations, analysts can apply the
threat reduction technique and continue with the diagram exploration. This
technique essentially allows copying the identified attack scenarios to all the
said locations in the report. After the diagram has been explored the threats are
prioritized according to their risk value (step 4). As the risk assessment happens
at the end, Stride is a ‘risk-last’ threat analysis technique. An unfortunate
consequence of this approach is that the effort spent identifying low-risk threats
could be a potential time-waster and a source of lower productivity.

5.2. THE COMPARED TECHNIQUES 97

Figure 5.2: The main steps of performing eStride

ECU

Mobile
app

WiFi
dongle

Get
SW

App
store

SW
storage

Driver Fleet
tech.

SW: C(L),
I(H), A(L)App

SW: C(L),
I(H), A(L)

SW: C(L),
I(H), A(L)

SW: C(L),
I(H), A(L)C

AN

WiFi VPN

Central Systems S T R I D E
External Entity x x

Process x x x x x x

Data Flow x x x

Data Store x ? x x

✘
✘
✘✘
✘
✘

Credentials

Extension
C,I,A Objectives
H,M,L Priorities

Asset source

Asset target
NET Channel

Assumption

eStride – The second technique we study is the Extended STRIDE (here-
after eStride, which is an example of a ‘risk-first’ technique [182]. As shown
in the right-hand side of Table 5.1, the analysis technique is similar to Stride,
with a few substantial differences. In eStride, an asset analysis is performed at
the beginning, during the model building phase. This includes the identification
of assets, their security objectives (e.g., confidentiality should be preserved) and
their importance (e.g., high confidentiality). This security relevant information
is inserted in an extended diagram, or eDFD. Figure 5.2 shows an eDFD (of the
same system as shown before) and how it is used. For brevity, we have omitted
the accountability objective (effected by the threat of repudiation) from the
figure. The eDFD also carries information about the source and sink of each
asset (i.e., an information scenario), the type of communication channels in
the system, and domain assumptions that are relevant to the security analysis
(e.g., existing security solutions). To save time, this additional information is
only added to elements involved in the transfer (or storage) of high-priority
assets (as observed in Figure 5.2).

The second phase of eStride is a guided exploration of the eDFD (steps
1-3 in Figure 5.2). Instead of visiting each element in the graph (as is done in
Stride), the analysts consider end-to-end information scenarios (i.e., paths
from source to sink, such as the path of the ‘SW’ from the ‘SW Storage’ all the
way to the ‘ECU’) of assets with at least one high-priority objective (step 1).

Further, in step 2 the mapping table used in Stride is pruned before
threats are identified. In particular, the categories of threats that do not
relate to the high-priority objectives are discarded. For instance, in Figure
5.2 the only security objective with a high value is integrity, thus information
disclosure (which directly effects confidentiality) and denial of service (effecting
availability) threats can be skipped. Spoofing and elevation of privilege threats
can not be skipped so easily, as they can potentially threaten all the security
objectives. However, the analysts may make domain assumptions about existing
security solutions. For example, they may assume a mutually authenticated and
end-to-end encrypted channel (‘VPN’ in Figure 5.2) between the components

98 CHAPTER 5. PAPER D

of the ‘Central Systems’ and the ‘Mobile app’. Therefore, spoofing the process
‘Get SW’ to distribute malicious updates could be skipped in the analysis. In
this case, spoofing the ‘ECU’ or the ‘WiFi dongle’ must still be considered.

Similar to Stride, attack scenarios are built and discussed for feasibility
with respect to the domain, and threat reduction can be applied (step 3).
However, using eStride the analysts are equipped with more information to
discuss the feasibility (e.g., existing security solutions). The expected benefit
is a reduced effort due to bypassing threat prioritization (step 4 in Stride)
and investigating fewer threats.

5.3 Design of the Study
We conduct two case studies where we compare Stride to the eStride. In
what follows, we present the research questions, industrial cases used in this
study, and the participants. We also describe the task performed by the
participants, the on-site workshops, and the data collection methods.

5.3.1 Research questions
This study answers research questions regarding the differences in the analysis
outcomes (RQ1, RQ2, RQ4) and procedure (RQ3) for the studied techniques.
RQ1. What are the differences between a risk-last and a risk-first analysis
technique in terms of productivity?

Risk-last threat analysis prioritizes threats at the end of the analysis proce-
dure. In contrast, risk-first analysis aims to by-pass threat prioritization by
analyzing the high risks first, at the cost of a more extensive modeling phase.
The purpose of the first research question is to understand whether the extra
up-front effort has an impact on the productivity, measured as the amount of
correctly identified threats per time unit.
RQ2. What are the differences between a risk-last and a risk-first analy-
sis technique with respect to the timeliness and amount of discovered high-
priority threats?

In realistic circumstances, threat analysis sessions are pressed for time.
Achieving complete coverage with a manual analysis is challenging in this
context. Therefore, threats are often overlooked [10,210]. It seems reasonable
to ‘knowingly’ overlook less-important threats as compared to high-priority
threats. The purpose of the second research question is to investigate whether
risk-first analysis produces important threats faster (and in a larger quantity)
when compared to the risk-last analysis technique.
RQ3. What are the differences between a risk-last and a risk-first analysis
technique with respect to both the timeliness and the amount of activities as
well as activity patterns?

Apart from the activities in Table 5.1, important events and support
activities take place during a threat analysis session. For instance, updating
the diagram, or making an assumption. Support activities include pointing at
the board, taking a break, documenting, referring to case documentation, etc.
Due to the repetitive nature of manual threat analysis, these activities tend to
re-occur. We are interested to investigate which activities appear more often
or sooner, and how that differs for the two techniques. In addition, we observe

5.3. DESIGN OF THE STUDY 99

combinations of activities, or activity patterns to understand which technique
better facilitates constructive thinking. Therefore, the purpose of the third
research question is to investigate the differences in the ‘way of working’ for
the studied techniques.
RQ4. What is the effect of the security expertise of the participants on the
productivity and correctness of a risk-first and risk-last analysis technique?

Previous studies paint a picture of the current security activities, skills [211]
and threat analysis practices [15,33] in agile organizations. In [15] three (out
of four) interviewed companies revealed that developers are already involved in
threat analysis. Further, in two organizations [15] they are even responsible
for identifying threats, but still need input (i.e., from security managers, or
consultants) when it comes to asset and risk analysis. Considering the fairly
acceptable performance measured for STRIDE in the academic setting [10,210],
we are interested to study how security expertise relates to the performance of
the two techniques.

5.3.2 Industrial partners
Org A The study was first executed within a multinational automotive organi-
zation with over 100 000 employees worldwide. The core activity of Org A is
the production, distribution and sale of trucks, buses, and construction equip-
ment. This multinational has established security practices in the development
life-cycle and performs STRIDE-like threat analysis on a daily basis. From a
security standpoint, participants from Org A can be regarded as experts.

Org B The study was replicated within a younger (and smaller in terms
of number of employees) organization based in a different country. This
organization is specializing in the development and testing of autonomous
driving solutions. In comparison, development teams in Org B are much
smaller and more cross functional. In addition, threat analysis is not performed
routinely within Org B. From a security standpoint, participants from Org
B can be regarded as novices.

5.3.3 Industrial cases
We ask each company to identify a software system they want to analyze from
a security standpoint. Each of our industrial collaborators put together a docu-
ment describing their system, including textual specifications and technical dia-
grams. We provided feedback on the documentation in order to guarantee that
it was clear and contained enough information. In what follows we briefly de-
scribe the cases but omit details due to confidentiality concerns. Both cases are
from the automotive domain and deal with (safety critical) embedded software.

Org A– ECU update. The analyzed industrial case is about the firmware
update of an Electronic Control Unit (ECU) in a truck. The update can be
performed by an authorized party (e.g., the driver who wants to change the
speed limiter when crossing countries) via a mobile app and without visiting
the workshop. In the analyzed scenario, the driver (or technician) connects
their mobile device to the WiFi dongle of the vehicle to update the ECUs. Next,
they can use the mobile application to (i) configure (if properly authorized)
certain ECU parameters, or (ii) download the ECU software updates from

100 CHAPTER 5. PAPER D

a remote software repository (owned by the OEM) and install them on the
ECUs of their vehicle. This case is documented as a box-and-arrow reference
architecture and a handful of pages containing text.

Org B– HIL testing. The analyzed system is a simulator with hardware
in the loop (HIL). The platform allows the execution of automated tests of
autonomous driving components. In the analyzed scenario, an authenticated
test operator can schedule performance tests on a piece of embedded software.
The component is rigged to the system, which provides simulated sensor data
and collects performance measurements. The platform executes the appropriate
test cases and provides the obtained measurements to the test operator (while
also storing them in a private cloud).

5.3.4 Participants
In each organization, we divided the participants in two teams, with each
performing the threat analysis of the same case with a different technique.
Within each organization, the two teams had similar size and comparable
expertise. A thorough discussion of the seniority level and security expertise of
the participants (across organizations) can be found in Section 5.4.4.

Org A The participants are industrial experts with some experience in
threat analysis. We assembled two teams with 3 (Stride) and 4 (eStride)
members. The eStride team had an additional member, a threat analysis
trainee. Each team member had an assigned role (process enforcer, security
expert, and domain expert) according to their expertise. The roles were assigned
to reflect how threat analysis sessions were performed within the organization.
The role of the process enforcer is to ensure that the team was performing the
analysis in accordance with the prescribed procedure, and that the discussions
(typically about attack feasibility) do not loop or stray to unrelated topics.
Security experts take the lead in suggesting attack scenarios, and the role of
the domain experts is to describe technical details required to contextualize
the attack to the system under analysis. The trainee in eStride was assigned
the role of a security expert, given the background of the participant.

Org B The participants are industrial experts with deep knowledge of the
case but with no prior threat analysis experience and little security background.
We assembled two teams with 3 members each. Differently from the other
company, there was no strict role separations among members of the groups.
This is in line with the way of working at the company. All members played
a mix of both domain and security expert. Additionally, each team had one
student member (doing an industrial MSc thesis at the company) that joined
as observer. The students did not contribute to the work of the teams.

Supervision of participants. The experimenters were present in all
analysis sessions for two reasons. First, they monitored the participants
to ensure that the analysis was indeed performed according the instructed
procedure. Second, they were taking notes and making observations, which
were used to support the data analysis afterwards. We remark that the
experimenters strictly refrained from influencing the analysis in any respect
and did not contribute to the discussion. In Org A, the experimenters joined
purely as observers. As the teams in Org B were unexperienced with STRIDE,
the experimenters also answered procedural questions.

5.3. DESIGN OF THE STUDY 101

Day 2
DFD

Building
STRIDE
Analysis

eSTRIDE
Analysis

Reports

eDFD
Building

Doc.

STRIDE
Training

eSTRIDE
Training

Day 1

Joint
Training

XLS

XLS

Doc.

Day 3

Figure 5.3: The execution of the study in both organizations

5.3.5 Task
In both organizations, the two teams were presented with the same task: per-
form a threat analysis on the industrial case using the prescribed technique.
Both teams were asked to (1) build a diagram based on the architectural docu-
mentation, and (2) analyze the diagram according to the assigned technique.

Building. The type of diagram to be built differed across teams: a DFD
for the Stride teams and an eDFD for the eStride teams. As described
in Section 5.2, we remind that eDFD are richer models that require, among
other things, more in-depth thinking about the assets. During this phase, the
participants resorted to their domain knowledge and the available system doc-
umentation.

Analyzing. The second phase required a discovery of as many threats as
possible given the available time. The Stride teams performed a systematic,
element by element exploration of the diagram. In contrast, the eStride
teams performed a guided analysis of each end-to-end scenario containing
high-value assets (see Section 5.2). In addition, the Stride teams were asked
to assign priorities (i.e., risk values) to the identified threats at the end. Along
with reported threats, the threat priorities were assessed by experimenters. In
contrast, the eStride teams were asked to assign priorities to assets before
analyzing the diagram. The experimenters assessed the asset priorities, but
also marked the threat priorities to enable a comparative quantitative analysis.
We remind the reader that threat priorities are approximated by considering
the likelihood and impact (i.e., severity of compromising an asset objective).
The priority of the compromised asset objective is a deciding (but not the sole)
factor in determining the threat priority.

Reporting. As soon a threat was discovered, it was documented in a
report, which had to be submitted electronically at the end. The reports
contained a list of the identified threats, their locations in the diagram, attack
scenarios exemplifying the threats, and estimated priority of each threat (in
case of Stride). The participants were given a template for the report, in
the form of a spreadsheet. The purpose of the template was to simplify and
standardize our analysis of the results.

5.3.6 Execution of the study
Figure 5.3 depicts the execution of the study in both organizations. The study
was split into sessions (3 hours per day in Org A and about 5 hours per day
in Org B) taking place on site on three separate days during the same week.

102 CHAPTER 5. PAPER D

The authors supervised all sessions. All the material (i.e., documentation of
the industrial case, training material, description of task, report template) was
shared with the participants a week in advance. They were strongly encouraged
to read all the material (about 20 pages) before the start of the study.

Day 1: Training. The teams were separated and specifically trained to
accomplish their task. The training consisted of brushing up basic security
concepts (Joint Training in Figure 5.3), understand how to build DFDs (or
eDFDs), and learning how to perform STRIDE (or eSTRIDE).1 The training
sessions contained several hands on exercises for the participants. Due to their
limited security expertise, in Org B we planed a longer training session (Org
B: 5h vs Org A: 3h), in which we elaborated more on the security concepts,
including security threats and countermeasures.

Day 2: Building diagram. On the second day, the teams were given
printed copies of all the material and started worked on the task (see Sec-
tion 5.3.5). Once the participants finished building the diagram, they were
allowed to continue with the diagram analysis. In proportion to the complexity
of the system under analysis, we allotted only 3 hours per day to simulate
realistic time constraints in Org A. We intentionally relaxed this constraint in
Org B (5 hours) to avoid overloading the less security experienced group of
participants and putting them under stress.

Day 3: Analyzing the diagram. On the third day, the teams were given
the same printed material, and the diagram they had created the previous day.
They continued where they left off until they finished with the entire task. All
the teams finished in the alloted time, and some even finished early (namely,
the Stride team in Org A and the eStride team in Org B).

5.3.7 Qualitative measures
We have collected voice recordings of analysis sessions in Org A and took
detailed hand notes of those sessions in Org B. This material has been analyzed
to answer RQ3.

Org A The tape recordings have been manually transcribed by the first
author using dedicated software.2 The manual transcription process helped
the experimenters gain a deeper understanding of the recorded material. After
having a thorough understanding of the recordings, the first author coded the
transcriptions. Coding is a technique for systematically marking chunks of
transcriptions. The analysis of code occurrences reveals trends and supports
a qualitative analysis. Table 5.2 depicts the hierarchy of codes we used. We
coded activities and events related to diagram building, analysis of diagram,
support activities, and detours.

Activities are durable actions of participants, such as drawing on the board
and architecture abstraction and refinement, which occurred during the diagram
building phase. Regarding diagram analysis, we coded the activities of attack
scenario development, threat feasibility discussion, threat consequence, and the
like. We also coded detour activities (e.g., terminology discussion) and support
activities (e.g., pointing on the board) to better understand activity patterns.

1In Org A, we had a separate, short training session with the process enforcers to remind
them to monitor the progress and speed up the discussion, if necessary.

2https://www.qsrinternational.com/nvivo/home

https://www.qsrinternational.com/nvivo/home

5.3. DESIGN OF THE STUDY 103

Table 5.2: Codes used to mark threat analysis activities and events. Codes for
events are marked by the † symbol

Activity groups Coded activities and events

Building diagram Drawing on the board
Architecture abstraction/refinement
Asset analysis
Extending the diagram
Focusing on critical architecture
Scope discussion
Making an assumption†

Analyzing diagram Attack scenario development
Domain discussion
Threat feasibility
Threat consequence
Threat prioritization
Threat reduction
Using assumption†
Updating diagram†
High-priority threat found†
Low or Medium-priority threat found†

Support activities Pointing at board†
Referring to task description†
Referring to assumptions†
Referring to case document†
Referring to training material†
Break†
Unsure
Documenting

Detour Chatting
Difference in opinion
Terminology

On the other hand, events (marked with † in Table 5.2) are instantaneous
participant actions. For instance, while discussing about the scope of the
analysis the participants may have made an assumption about trusting an
external entity, which they documented immediately. Certain events were only
possible to code after having assessed the handed-ins. In particular, the event of
correctly discovering a high-priority threat could be coded in the transcriptions
after having assessed the threats and their priorities. Therefore, we revisited
the transcriptions to manually insert such codes.

Org B Recording of the analysis sessions was not allowed by Org B.
Therefore, the experimenters took detailed notes about the activities occurring
during the sessions, including timestamps of such activities and events. These
notes have been labeled, using a subset of codes in Table 5.2 (see codes in
bold). We could not use all the codes because it would be impossible to for
the experimenters to reliably keep track of that many activities in their note.
Nevertheless, we believe that the subset of the codes is representative and did
not have an impact on the quality of the analysis.

Interviews. To answer RQ4, we have organized short interviews (20
minutes for each team) at the end of the third day. The semi-structured
interviews contained a prepared list of questions (6), which helped us better
understand their background knowledge and experience. Namely, we inquired
about their perceived progress, the challenges they experienced, and asked
them to explain how they approached the task at hand (e.g., What was your
strategy for visiting the diagram and why?). The collected information (in the

104 CHAPTER 5. PAPER D

form of notes) was used as a complement to the questionnaire (see below) to
better understand their background knowledge and experience.

5.3.8 Quantitative measures
Questionnaire. To answer RQ4, we designed a brief entry questionnaire. We
used the entry questionnaire to collect the background of participants, in terms
of the years of professional experience, their familiarity with security (on a
scale with 4 levels), and their prior experience with threat analysis (on a scale
with 4 levels).

Reports. To answer RQ1 and RQ2, we assessed the reports handed in by
our participants. The hand-ins included pictures of the created diagrams (DFD
or eDFD), a list of security assumptions made during the analysis, and a list
of identified threats (documented according to the provided template). The
reported threats have been assessed and marked as correct (true positives) or in-
correct (false positives) by the first author. For the cases where the assessor was
not feeling fully confident (5 to 10 threats in each organization), we had a discus-
sion with the industrial experts (in both organizations) in order to come to an
agreement. This also acted as a form of quality control for the assessment made.

A true positive (TP) is a correctly identified threat. This means that:
(a) the participants found the threat in the correct diagram location, (b) the
participants found a realistic attack scenario for the security threat or the
participants found a security vulnerability, and (c) the threat is correct with
respect to the assumptions the participants made.

A false positive (FP) is an incorrectly identified security threat. This means
that the participants found the security threat in the wrong location or the
threat is not correct with respect to the assumptions the participants have
made. Additionally, some reported threats had insufficient information for us
to assess them. In these cases, we followed a strict approach and marked them
as false positive as well.

With the above measures, we compute the aggregate indicators of precision
(P = T P

T P +F P) as the ratio between correctly identified threats and all reported
threats.

We measured the time it took for participants to complete the task. In
particular, we measured the time it took for participants to complete the
3 phases of the task. For Stride these were (1) building the diagram, (2)
analyzing the diagram, and (3) prioritizing the threats. Similar, for eStride
the phases were (1) building the diagram, (2) extending the diagram, and (3)
analyzing the diagram. We do not include coffee breaks in the measured time.
Accordingly, we compute productivity (Prod = T P

T otalT ime) as the amount of
correctly identified threats per hour.

In contrast to eStride, the Stride teams also handed in the threat
priorities (as high, medium, low). This is due to the different technique
procedures, as explained in Section 5.2. However, we did not rely on the
reported threats priorities of Stride, and instead assessed the threat priorities
for both teams ourselves. The assessment of threat priorities was also discussed
together with our industrial partners (in both organizations). Similar to the
threat assessment discussions, a set of 5 to 10 threat priorities were in focus.
There were only 2 disagreements (in Org B) regarding threat priority (2 high

5.4. RESULTS 105

Table 5.3: Correct (TP) and incorrect (FP) threats reported by the teams

Org A Org B

Stride
eStride

Common
Stride

eStride
Common

TP 12 13 6 40 32 14
FP 15 0 - 12 14 -

Precision (%) 0.4 1 0.8 0.7

threats were marked with a medium priority).

5.3.9 Additional quantitative measures in Org A
To answer RQ3, we also analyzed the transcribed recordings. As mentioned
before, coding the transcriptions enabled us to track the exact location of a
particular activity or event in the transcript (e.g., position index in the text
where the activity starts). Therefore, we analyzed the locations of the codes in
the transcriptions and the spatial distance between them. The spatial distance
between codes is a proxy measure of time distance between activities. We used
the distance in the text instead of the actual time distance for convenience
reasons, as the transcription software did not provide timestamps for the tran-
scribed text. However, the spatial distance has some advantages. For instance,
it is insensitive to a pause in the conversation. The normalized average distance
between codes was measured as the average number of characters separating
the (starting indexes of the) occurrences of each two codes, normalized to the
total length (in characters) of the transcription.

5.4 Results
For each research question, this section reports the results of the objective
analysis of the collected data. We further discuss and answer each research
question in Section 5.5.

Before we dwell on the RQs, Table 5.3 reports the observed levels of true
positives and false positives in each team (Stride vs eStride) of the two
organizations (Org A vs Org B). The table also shows the threats that are
in common across each pair of teams (this is further discussed in Section 5.5.
Within organizations, the number of correctly reported threats (TPs) is similar
(Org A: 12 vs 13 and Org B: 40 vs 32). In Org B the amount of mistakes
is similar between treatments (Stride: 12 vs eStride: 14). Therefore, the
precision of the teams in Org B is similar (Stride: 0.8 vs. eStride: 0.7).
However, in Org A the Stride team reported 15 incorrect (FPs) threats while
the eStride team reported none. Most of the incorrect threats of this team
(13 out of 15) were marked as such due to not having sufficient information for
their assessment (see Section 5.3.8). This is reflected in the measured precision
(Stride: 0.4 vs eStride: 1).

The results concerning the precision are inconclusive due to the strict
assessment in Org A (i.e., threats not having sufficient information are marked
as incorrect), but, otherwise, we have not observed major differences between

106 CHAPTER 5. PAPER D

Table 5.4: RQ1. Productivity

Org A Org B
Stride eStride Stride eStride

Building DFD (h) 1h10 0h15 1h55 1h05
Extending DFD (h) - 2h20 - 1h15
Analysis (h) 2h20 2h35 4h15 3h25
Prioritization (h) 0h20 - 0h50 -

Total time (h) 3h50 5h10 7h00 5h45

Productivity (TP/h) 3 2.6 5.7 5.6

Table 5.5: RQ2. The correct threats (TP) are broken down into high (H),
medium (M) and low (L) importance.

Org A Org B
TP Stride eStride Common Stride eStride Common

H 4 (33%) 8 (62%) 4 6 (15%) 15 (47%) 4
M 2 (17%) 1 (1%) - 22 (55%) 10 (31%) 4
L 6 (50%) 4 (37%) 2 12 (30%) 7 (22%) 6

Total 12 13 6 40 32 14

the two techniques.

5.4.1 RQ1: Productivity of teams
As shown in Table 5.4 (bottom line), the productivity levels are pretty similar
across the two techniques. As discussed later in Section 5.4.4, there are some
differences in productivity between the two organizations.

We have looked into the time it took for each team to accomplish the
different parts of the given task. Across organizations, it took the eStride
team less time to build the the initial DFD diagram (Org A: 0h15 vs 1h10 and
Org B: 1h05 vs 1h55). However, the eStride teams had to put in significant
extra time to extend the diagrams with the necessary security information
(see Section 5.2). In Org A the time spent on analysing the diagrams and
identifying the threats was similar across teams, while in Org B the eStride
team spent about 1h less on this task. Finally, the Stride teams had to put
in additional effort to prioritize the identified threats at the end (this activity
is not necessary in eStride).

5.4.2 RQ2. Discovering high-priority threats
As shown in Table 5.5, in both organizations, the eStride teams have found
more high priority threats (Org A: 62% vs 33% and Org B 47% vs 15%). Only
a part of the discovered threats were common, therefore we have observed that
eStride is inclined to produce more high-priority threats compared to Stride.

Figure 5.4 depicts when the teams discovered high-priority threats in Org
A.3 We have manually inspected the recordings to recover the time-stamps of
the discovered high-priority threats due to the importance of this code. The
Stride team started analyzing the diagram one hour into the first day and

3This data in not available in Org B because we were not allowed to tape the sessions.

5.4. RESULTS 107

0h00' 0h28' 0h57' 1h26' 1h55' 2h24' 2h52' 0h00' 0h28' 0h57' 1h26' 1h55' 2h24' 2h52'

0h00' 0h28' 0h57' 1h26' 1h55' 2h24' 2h52'

Day 1

0h00' 0h28' 0h57' 1h26' 1h55' 2h24' 2h52'

Day 2

STRIDE

eSTRIDE

0h00' 0h28' 0h57' 1h26' 1h55' 2h24' 2h52' 0h00' 0h28' 0h57' 1h26' 1h55' 2h24' 2h52'

0h00' 0h28' 0h57' 1h26' 1h55' 2h24' 2h52'

Day 1

0h00' 0h28' 0h57' 1h26' 1h55' 2h24' 2h52'

Day 2

STRIDE

eSTRIDE

0h00' 0h28' 0h57' 1h26' 1h55' 2h24' 2h52' 0h00' 0h28' 0h57' 1h26' 1h55' 2h24' 2h52'

0h00' 0h28' 0h57' 1h26' 1h55' 2h24' 2h52'

Day 1

0h00' 0h28' 0h57' 1h26' 1h55' 2h24' 2h52'

Day 2

STRIDE

eSTRIDE

Figure 5.4: RQ2. High-priority threats (dots) discovered by the Stride and
eStride team in Org A. The end of each session is marked with a double
vertical bar.

discovered most high-priority threats during the first day. The last high-priority
threat was discovered by the Stride team about 40 minutes into the second
day. The eStride team started analyzing the diagram on the second day, hence
they discovered most high-priority threats during the second day. Yet, they
discovered one high-priority threat already during the first day while discussing
security objectives of assets and their values. Compared to the Stride team,
the eStride team did not find high-priority threats faster.

Although we do not have precise measurements, we have informally observed
a similar trend regarding the discovery time of high-priority threats in Org B.
In addition, we remark that many high-priority threats were found around the
trust boundaries (in both teams), therefore the strategy of visiting the diagram
may have an impact on the timely discovery of high threats.

5.4.3 RQ3. Focus on activities and activity patterns
First, we report on the activity focus in both organizations. Then we report
on time-lines of activities, and activity patterns for teams in Org A.

5.4.3.1 Focus on activities

The focus of activities was observed by analyzing the coded transcriptions
(for Org A) and the structured notes (for Org B). Figure 5.5 shows the
prevalence of each of the four activity groups: building the diagram, analyzing
the diagram to identify threats, performing support activities (like taking
breaks, referring to task description, training material, etc.), and detouring
from the task (essentially, loosing focus and wasting time). We remind the
reader that we used a subset of all codes from Table 5.2 in Org B.

Org A. During the first day, the Stride managed to complete the diagram
and started the identification of threats. In general, the team did not focus on
one particular activity. Building the diagram covered 28% of the transcription.

108 CHAPTER 5. PAPER D

27%

28%13%

32%
70
%

5%

25%

25%

45%

11%

19%

58%
4%

12%

26%

STRIDE

eSTRIDE

Day 1 Day 2

43%

12%
15%

30%

32%

15%21%

32%
62%

2%
15%

21%

STRIDE

eSTRIDE

Day 1 Day 2

Analyzing
Building
Detour
Support

54%

8%

19%

19%
27%

28%13%

32%
70
%

5%

25%

25%

45%

11%

19%

58%
4%

12%

26%

STRIDE

eSTRIDE

Day 1 Day 2
Analyzing Building Detour Support

avg less detour (9% vs 17,5% per day) (even thought feasibility was discussed more)
the rest looks very similar...

experts non-experts

43%

12%
15%

30%

32%

15%21%

32%
62%

2%
15%

21%

STRIDE

eSTRIDE

Day 1 Day 2

54%

8%

19%

19%

43%

12%
15%

30%

32%

15%21%

32%
62%

2%
15%

21%

STRIDE

eSTRIDE

Day 1 Day 2

Analyzing
Building
Detour
Support

54%

8%

19%

19%
27%

28%13%

32%
70
%

5%

25%

25%

45%

11%

19%

58%
4%

12%

26%

STRIDE

eSTRIDE

Day 1 Day 2
Analyzing Building Detour Support

avg less detour (9% vs 17,5% per day) (even thought feasibility was discussed more)
the rest looks very similar...

experts non-experts

(a) Org A

27%

28%13%

32%
70
%

5%

25%

25%

45%

11%

19%

58%
4%

12%

26%

STRIDE

eSTRIDE

Day 1 Day 2

43%

12%
15%

30%

32%

15%21%

32%
62%

2%
15%

21%

STRIDE

eSTRIDE

Day 1 Day 2

Analyzing
Building
Detour
Support

54%

8%

19%

19%
27%

28%13%

32%
70
%

5%

25%

25%

45%

11%

19%

58%
4%

12%

26%

STRIDE

eSTRIDE

Day 1 Day 2
Analyzing Building Detour Support

avg less detour (9% vs 17,5% per day) (even thought feasibility was discussed more)
the rest looks very similar...

experts non-experts

43%

12%
15%

30%

32%

15%21%

32%
62%

2%
15%

21%

STRIDE

eSTRIDE

Day 1 Day 2

54%

8%

19%

19%

43%

12%
15%

30%

32%

15%21%

32%
62%

2%
15%

21%

STRIDE

eSTRIDE

Day 1 Day 2

Analyzing
Building
Detour
Support

54%

8%

19%

19%
27%

28%13%

32%
70
%

5%

25%

25%

45%

11%

19%

58%
4%

12%

26%

STRIDE

eSTRIDE

Day 1 Day 2
Analyzing Building Detour Support

avg less detour (9% vs 17,5% per day) (even thought feasibility was discussed more)
the rest looks very similar...

experts non-experts

(b) Org B

Figure 5.5: RQ3. Distribution of activities in both organizations

The diagram analysis covered 27% of the time (mainly discussing the domain
and developing attack scenarios). The team detoured often from the prescribed
procedure (13%). Finally, the Stride team was involved in more support
activities during the first day (32%).

The eStride team invested more on the diagram building during day
1 (45%). They did not identify threats during the first day, however, they
performed other analysis activities, namely a thorough asset analysis, for a
similar percentage than the other team (25%). Similarly to the other team,
the eStride team detoured often during the first day (11%). In contrast to
Stride, the support activities amounted to only 19% during the first day.

During the second day, both teams made minor changes to the diagram
(5% for Stride and 4% for eStride). The Stride team focused on diagram
analysis more than the eStride team did (70% vs 58%), and without detouring
from the task. Support activities are comparable.

Org B. Overall, a similar trend of activity focus can be observed for the
teams in the second organization. Namely, the Stride team started analyzing
the diagram earlier. However, the eStride team did not spend significantly
more time on building and extending the diagram. Both teams focused on
diagram analysis during the second day (Stride: 54% and eStride: 62%). In
contrast to Org A, teams in Org B detoured from the prescribed procedure
more often, which is explained by a lesser familiarity of the participants with
threat analysis.

5.4.3.2 Summary

Contrary to our expectations, the eStride team in Org B (less knowledgeable)
did not spend more time to create and extend the diagram. This is surprising,
considering the additional step of asset analysis, which took more attention of
the sibling team in Org A. Similar to Stride, the eStride teams still analyzed
the diagram on the first day, but focused on the analysis on the second day. We
did not observe differences in detour and support activities across techniques.

5.4. RESULTS 109

Detour
Analyzing
Building
Support

0h00' 0h15' 0h30' 0h45' 1h00' 1h15' 1h30' 1h45' 2h00' 2h30'

Detour
Analyzing
Building
Support

0h00' 0h15' 0h30' 0h45' 1h00' 1h15' 1h30' 1h45' 2h00' 2h30'

Day 1

STRIDE

eSTRIDE

13 16
10 10

5 5
0 0

0h00' 0h15' 0h30' 0h45' 1h00' 1h15' 1h30' 1h45' 2h00' 2h30'

28 25
20 20
10 10

0 0
0h00' 0h15' 0h30' 0h45' 1h00' 1h15' 1h30' 1h45' 2h00' 2h30'

Day 2

Figure 5.6: RQ3. Day 1: Intensity of activity groups over time for the Stride
(top) and eStride team (bottom) in Org A

5.4.3.3 Timeline of activities in Org A

Figures 5.6 and 5.7 depict the intensity of each activity group over time. The
intensity (darker color means more intense) is computed by counting the num-
ber of code occurrences for each activity group per ten-minute time frame.
Note that, the Stride transcription is almost half the size of the eStride
transcription (90,612 vs 151,907 characters). This explains the different pro-
portion of code occurrences in the timelines. In what follows, we discuss the
similarities and differences in activities during the first day and the second day.

Similarities (Day 1). In the first 15 minutes both teams focused on
building the diagram. In particular, both teams focused on abstracting and
refining the architecture, discussing the domain, discussing the scope, and
drawing on the board. Other support activities in this time-window include
referring to the case documentation. In the span of the entire session, both
teams sometimes detoured from the instructed analysis procedure. The detours
during the first day are fairly evenly distributed across teams. Both teams
made the assumptions during the first day, and made one last assumption
about one hour into the second day.

Differences (Day 1). About an hour into the first day, both teams
focused on support activities (particularly, referring to case documentation).
The Stride team finished building the diagram after about an hour. They
read parts of the case documentation aloud to validate the diagram before they
started to analyze it. On the other hand, the eStride team started extending
the diagram with domain assumptions after about an hour. They verified each
assumption by reading the case documentation aloud. The eStride team
started looking for threats only on the second day. In contrast to Stride, the
eStride team made, overall, less assumptions and documented them early on.
The Stride team agreed upon some assumptions but did not document them.

Similarities (Day 2). As instructed, both teams performed activities
related to diagram analysis which are accompanied by support activities (mainly,
documenting threats). Roughly speaking, the participants alternated between
analyzing the diagram and documenting threats. In Figure 5.7, this pattern
is more apparent for the eStride team, as the Stride team was very quick
in documenting threats. Both teams had a strong focus on diagram analysis
in two time-frames (Stride 01:10:00-01:15:00 and 01:20:00-01:25:00, eStride
01:20:00-01:25:00 and 02:00:00-02:05:00). In all four cases, the teams managed

110 CHAPTER 5. PAPER D

13 16
10 10

5 5
0 0

0h00' 0h15' 0h30' 0h45' 1h00' 1h15' 1h30' 1h45' 2h00' 2h30'

28 25
20 20
10 10

0 0
0h00' 0h15' 0h30' 0h45' 1h00' 1h15' 1h30' 1h45' 2h00' 2h30'

Day 2

Detour
Analyzing
Building
Support

0h00' 0h15' 0h30' 0h45' 1h00' 1h15' 1h30' 1h45' 2h00' 2h30'

Detour
Analyzing
Building
Support

0h00' 0h15' 0h30' 0h45' 1h00' 1h15' 1h30' 1h45' 2h00' 2h30'

Day 1

STRIDE

eSTRIDE

13 16
10 10

5 5
0 0

0h00' 0h15' 0h30' 0h45' 1h00' 1h15' 1h30' 1h45' 2h00' 2h30'

28 25
20 20
10 10

0 0
0h00' 0h15' 0h30' 0h45' 1h00' 1h15' 1h30' 1h45' 2h00' 2h30'

Day 2

Figure 5.7: RQ3. Day 2: Intensity of activity groups over time for the Stride
(top) and eStride team (bottom) in Org A

Table 5.6: RQ3. The average spatial distance (in number of characters normal-
ized by transcription length) between activity pairs in both teams. The top
part contains the pairs that have the most similar distances between the two
techniques (small values in the third column). The bottom part contains the
pairs with the least similar distances (big values)

Activity pairs Stride eStride ∆ dist

Threat reduction & Ref. to assumptions close close 0.10
Terminology & Domain discussion close close 1.70
High-priority threat found & Attack scenario or
vulnerability

close close 1.84

Asset analysis & Updating diagram far close 29.0
Ref. to training material & Unsure close far 38.38
Scope discussion & Updating diagram far close 38.24

to thoroughly analyze one threat in a span of five minutes. This entailed
(1) developing attack scenario, (2) using an assumption, (3) discussing threat
consequence, (4) determining feasibility, and (5) finding a correct threat. We
have observed that focusing on the above-mentioned pattern is beneficial for
correctly discovering threats.

Differences (Day 2). Compared to the first day, both teams detoured
less from the instructed analysis procedure. In particular, the Stride team
did not detour at all. In fact, the Stride team finished about one hour earlier.
Compared to eStride, during the second day the Stride team focused less on
feasibility analysis and on attack scenario development. The Stride team often
updated their diagram during the second day. Concretely, the team merged
data flows and removed one external entity and three data stores. Simplifying
the diagram helped the team to finish early.

Summary. During the first day the eStride team spent more time
building the diagram and during the second day, the Stride team did not
detour from the analysis procedure. We further discuss this in Section 5.5.

5.4.3.4 Distance between activity pairs in Org A

We calculated the average distances between all activity pairs for both teams.
Clearly, we cannot present all the results. Rather, In Table 5.6, we focus on
the activity pairs that have the most similar distances (top) and those with

5.4. RESULTS 111

0

20

40

60

Drawing on board
Architecture abstraction

Asset analysis

Extending the diagram

Scope discussion

Making an assumption

Attack or vulnerability

Domain discussion
Feasibility analysis

Threat consequence
Threat prioritization

Using an assumption

Updating the diagram

Pointing at board

Ref. to task description

Ref. to assumptions

Ref. to documentation
Ref. to training material

STRIDE eSTRIDE

Figure 5.8: RQ3. The average spatial distance (in number of characters
normalized by transcription length) between finding a high-priority threat and
other activities for both teams

the most different distances (bottom) between the two techniques.
In addition, we analyzed the distances between single activities in relation

to all other activities for both teams. In particular, Figure 5.8 shows the
average distance between finding a high-priority threat and each other activity.

Similarities. Both teams referred to their assumptions during threat
reduction to make sure the reductions do not lead to overlooked threats
(∆dist = 0.10). When the teams referred to assumptions, they read the
assumption out loud. In addition, both teams engaged in a domain discussion
while clarifying the terminology. Finally, both teams found high-priority threats
while developing attack scenarios or identifying vulnerabilities.

Figure 5.8 shows, that the average distance between using assumptions and
finding high-priority threats is small in the transcriptions of both teams. The
teams used assumptions to justify their reasoning for a threat or vulnerability
existence. Therefore, the average distance between referring to assumptions
and a finding high-priority threat is small in the eStride transcriptions.

Differences. In contrast to Stride, the eStride team performed an
asset analysis and iteratively updated the diagram with the extra security
information (∆dist = 29.0). In addition, the eStride team discussed the scope
of the analysis while updating the diagram. For instance, they discussed which
parts of the system can be left out of the analysis (assumed as trusted). This
was not discussed at length in the Stride team. During the first day, Stride
team referred to the training material when unsure.

Compared to Stride, the average distance between finding important
threats and discussing threat feasibility (and consequence) is smaller in the
eStride transcription (see Figure 5.8). Further, the eStride team found the
first high-priority threat when analyzing the assets and extending the diagram
in the first day. Compared to eStride, the average distance between finding
important threats and referring to training and case documentation is smaller
in the Stride transcription. In fact, the Stride team relied more on the

112 CHAPTER 5. PAPER D

Table 5.7: Entry questionnaire about seniority and security knowledge

Frequencies of the answers

Q1. How many years of working experience do you have?
Org A: 1 year (2) 2 - 5 years (2) 5 - 10 years (0) > 10 years (3)
Org B: 1 year (1) 2 - 5 years (2) 5 - 10 years (2) >10 years (3)
Q2. How would you rate your familiarity with information security?
Org A No background (0) Security novice (1) Security trained (3) Security expert (3)
Org B No background (1) Security novice (7) Security trained (0) Security expert (0)
Q3. How many threat analysis sessions have you been previously part of?
Org A None (5) 1 - 5 (1) 5 - 10 (1) 10+ (0)
Org B None (7) 1 - 5 (1) 5 - 10 (0) 10+ (0)

support material, whereas the eStride team relied more on the domain expert.
This may be due to factors of team dynamics, rather then the differences in the
techniques. Finally, the Stride team made several assumptions during diagram
analysis, therefore the average distance between making assumptions are finding
important threats is smaller, compared to the eStride transcription.

Summary. For both teams, assumptions played an important role in
finding high-priority threats and in reducing threats. In addition, developing
attack scenarios and discussing threat feasibility supported finding high-priority
threats (more so in the eStride team). However, we are aware that differences
in activity patterns might depend on factors related to team dynamics rather
then the differences in the techniques.

5.4.4 RQ4. Security expertise
As shown in Table 5.7, we handed out an entry questionnaire to understand the
background knowledge and experience in security of the participants. Clearly,
we trust the self-assessment of the participants.

From the answers, it is clear that the seniority (Q1) is equally distributed
between the participants of the two organizations. Also, the participants
have, predominately, no prior practical experience with threat analysis (Q3).
Across organizations, however, the participants differed with respect to their
knowledge about information security (Q2). In Org A most participants were
previously at least trained in security (3) or were security experts (3). In
contrast, the participants employed by Org B considered themselves security
novices (7 out of 8), at best. We have also inquired about their current role
in the organization. In Org A two participants were security consultants,
two were hired to conduct threat analysis, and three participants were senior
software architects with a security focused role. In Org B two participants
were team leaders and the rest were software developers with experience in a
variety of programming languages and platforms.

In summary, the above observations confirm the fact that participants from
Org A have a high security expertise with respect to Org B. In the following,
we summarize the effect of such disparity on the outcomes and execution of
the two techniques.

5.4. RESULTS 113

O
R

G
 A

O
R

G
 B

S T R I D E

0.0

0.1

0.2

0.3

0.0

0.1

0.2

0.3

Threat Category

T
P

s
(n

or
m

al
iz

ed
)

O
R

G
 A

O
R

G
 B

S T R I D E

0.0

0.1

0.2

0.3

0.0

0.1

0.2

0.3

Threat Category

T
P

s
(n

or
m

al
iz

ed
)

O
R

G
 A

O
R

G
 B

S T R I D E

0.0

0.1

0.2

0.3

0.0

0.1

0.2

0.3

Threat Category

T
P

s
(n

or
m

al
iz

ed
)

O
R

G
 A

O
R

G
 B

S T R I D E

0.0

0.1

0.2

0.3

0.0

0.1

0.2

0.3

Threat Category

T
P

s
(n

or
m

al
iz

ed
)

Figure 5.9: The number of correctly identified threats per STRIDE category
normalized by the total number of correct threats found in organization

5.4.4.1 Outcomes

Compared to Org A, both teams in Org B made mistakes. Namely, the
false positive rate (FP/(TP + FP)) is 23% and 30% in Org B, while only
one team (Stride) made mistakes in Org A (56%). We remind the reader
that most false positives of the Stride team in Org A were assessed as such
due to missing information in the documented threat scenarios. The achieved
precision (i.e., correctness) of the less experienced teams in Org B is still high
(0.8 and 0.7) compared to the best performance achieved by more experienced
analysts in Org A.

To gather more insight into the effect of security experience on the quality
of the threat analysis outcomes, we observed the distribution of the correctly
identified threats over the threat categories (i.e., STRIDE) and made a compar-
ison between the two organizations. Figure 5.9 depicts the number of correctly
reported threats per category (irrespective of the technique) normalized by
the total number of correct threats in each organization. In Org B (less
knowledgeable), the teams found more tampering, information disclosure and
denial of service threats, compared to spoofing, and repudiation. Elevation of
privilege threats were not reported, which is reasonable considering that these
are very technical and often used as a stepping stone for other threats [9]. Inci-
dentally, similar distributions have been recorded in studies observing STRIDE
performance in an academic setting [10,210].

In comparison, the threats found by Org A are more evenly distributed
across threat categories. Discussing threat feasibility led teams in Org A to
discard many tampering, information, disclosure, and denial of service threats
within the trust boundaries of the system. Possibly, the less experienced teams
are not able to make such judgments. Another possible explanation is that the
teams in Org A modeled smaller diagrams, in particular with respect to the
number of modeled processes. Namely, in Org A 16% of modeled elements
were processes, while in Org B 26% of elements were processes.

Further, the teams in Org B took about the same amount of time to build
and extend the diagrams as teams in Org A (see Table 5.4), but spent more time
analyzing threats, which was observed as the most time consuming and challeng-
ing task of threat analysis [212]. Despite longer sessions, the less experienced
teams in Org B have a much higher productivity (about 6 TP/hour vs about
3). Higher productivity does not, however, imply identification of more high-
priority threats. In fact, Table 5.5 shows that more experienced analysts identify

114 CHAPTER 5. PAPER D

a bigger percentage of high-priority threats, no matter the technique used.

5.4.4.2 Execution

Overall, the focus of activities in Org B is comparable to Org A (as observed
in Figure 5.5). In both, more support and diagram building activities occurred
during the first day, while during the second day the teams focused on diagram
analysis. But in Org B, the difference in focus between the teams is smaller.
This is explained by their the cross-functional organization of teams, which had
a positive effect on team dynamics. Further, we have observed that the less
experienced teams in Org B did not discuss feasibility of threats in detail. This
observation is in line with the measured high productivity in Org B, as teams
rarely got stuck in reasoning about the probability of threat occurrence and its
impact. However, the teams in Org B detoured more often during both days.
In particular, we have made note of teams inquiring the experimenters on-site for
support. This occurred 3 times in the Stride team, and 7 times in the eStride
team, where the interactions were either of procedural nature or assurance of
progress (e.g., ‘Is the created diagram sufficient, can we move on?’). Despite such
insecurities and shallow feasibility discussions, the teams were able to quickly
learn and correctly execute the analysis regardless of the assigned technique.

5.5 Discussion
In this section we discuss the results and answer the research questions.

5.5.1 RQ1: Productivity
Beyond counting the amount of TPs, we are also interested in getting insight
into whether the two techniques provide different results (conversely, overlaps),
in terms of security issues identified. Therefore, we have looked into the correct
threats reported by both teams and identified those that are similar with
respect to (i) diagram location, (ii) threat category, (iii) vulnerability and
threat description. In Org A, six security threats (4 high, 2 low) were correctly
discovered by both teams. In this organization, the Stride team discovered
6 threats that were not discovered by the eStride team (2 medium and 4
low-priority). In such cases, the eStride team either skipped some diagram
locations by using reductions (2 low, 1 medium) or agreed that the attack is
not feasible (2 low, 1 medium). The eStride team discovered 5 threats that
went unnoticed by the Stride team. In contrast, these threats were of high (4)
and medium priority (1). In these cases, the Stride team could not find any
vulnerability or attack. A possible explanation is that the Stride team may
not have discussed threat feasibility enough to find feasible attack scenarios or
that they were simply overlooked.

In Org B, 14 security threats (4 high, 4 medium, and 6 low) were common
for the two teams. The Stride team discovered some security threats that
were not discussed in the other team, but many were afterwards marked with
a medium (18) or low priority (6). Similar to Org A, the eStride team
discovered several (11) high priority threats, which were not discussed in the
other team.

5.5. DISCUSSION 115

Concerning, productivity (RQ1), we did not observe a difference between
the two techniques. Interestingly, however, the two techniques seem to guide
the teams to the discovery of different threats. Furthermore, the eStride
teams found more high-priority threats which were overlooked by the Stride
teams. In contrast, the Stride teams discovered more threats of low-priority.

5.5.2 RQ2: Discovering high-priority threats
We looked into how the teams approached the exploration of the diagrams and
the potential relation to finding high-priority threats. Despite the dictated
exploration strategy by the techniques, the teams were still free to choose
concrete elements to follow (e.g., which particular data flow, or which asset
flow to consider next). For instance, the Stride teams started exploring
the diagram starting from one external entity, but then continued differently.
Stride of Org A chose to first analyze all the processes, and then proceed to
other elements. The Stride in Org B instead explored the diagram following
the steps of the scenario (from the documentation) regardless of element
types. In both industrial cases, some high-priority threats were located on the
trust borders of the system (i.e., external entities, data stores, and processes
communicating with the aforementioned). Thus, an out-side-in exploration
strategy may be useful to find high-priority threats sooner. In addition, an
attack on the system boundary element is usually the first step of a chained
attack. Hence, accounting for the first steps systematically (at the beginning)
may help in discovering chained attack scenarios.

As observed, the eStride procedure helps in discovering more high-priority
threats, but to discover them sooner, the technique must emphasise the impor-
tance of analysing the asset sources and sinks first. In addition, an out-side-in
procedure may support the discovery of chained attacks.
Concerning high-priority threats (RQ2), we found that the eStride teams
found twice as many high-priority threats compared to the Stride teams.
Further, all high-priority threats that were discovered by the Stride teams
were also included in the reports of the eStride teams. In the context of
the conducted case studies, the eStride teams were more complete with
respect to finding high-priority threats. Yet, no evidence suggests that
eStride can identify high-priority threats sooner.

5.5.3 RQ3: Focus on activities and activity patterns
The time spent in ‘detour activities’ is significant (between 10-20% in Figure 5.5).
Regardless of the technique and organization, the teams often discussed the
terminology of the threat categories: in particular, the spoofing category in
relation to tampering and repudiation. Perhaps, this could be expected for
novice analysts, but it happened consistently in all teams. Generally, such
detours (or disagreements) were minimized by the process enforcer steering
the discussion. In Org A the Stride team often referred to the material
to reach consensus, instead. Possibly, this motivated the team to stay closer
to the instructed procedure on the second day (with no detours). The way
participants handled detours may depend on the team dynamics.

116 CHAPTER 5. PAPER D

In Org A, detours often happened when discussing threat feasibility (espe-
cially so in the eStride team). This is confirmed by the small average distance
of codes for these activities in the transcription. Therefore, feasibility analysis
may have slowed down the overall threat analysis. Discussing threat feasibility
often leads to estimating the probability of threat occurrence, which is difficult
and can lead to ‘analysis paralysis’, where too much focus is put on a single
threat.

In Org B, the feasibility of threats was not discussed in great detail.
Therefore this pattern (of slowing down the analysis) did not emerge as preva-
lent. Further, we have observed that detours happened due to discussing the
terminology and domain, rather then feasibility analysis.
Regarding the focus on activities (RQ3), we found that in one organization
(Org A) the eStride team spent more time on diagram building. Yet, in
the other organization (Org B) the eStride team built the diagram faster
and still found more high-priority threats. Across organizations, threat
feasibility discussion lead to ‘analysis paralysis’ which slowed down the
overall analysis. For what concerns the activity patterns, we found that
teams in Org A were careful when making threat reductions, backing those
decisions by referring to assumptions. In addition, assumptions were used
by teams to justify the existence of threats (in particular high-priority).
Our analysis indicates that differences in activity patterns might depend on
factors related to team dynamics.

5.5.4 RQ4. Security expertise
Our results show that less experienced teams (in Org B) made more mistakes
in their analysis. We looked into the FPs of these teams to better understand
their nature.

Most incorrect threats in Org B were duplicates (Stride: 6 out of 12
and eStride: 12 out of 14). Duplicates are threats with the same diagram
location, category and attacker scenario. For instance two spoofing threats of
an external entity with a slightly different threat description. For instance, in
the following example, the second scenario is a special case of the first one:

“1: The attacker can send data from anywhere in the world.”
“2: The attacker can pretend to be an operator.”

Other mistakes included incorrectly reported locations (we have no explanation
here) or threat categories (this is certainly due to a lack of familiarity with the
definitions of STRIDE). Finally, some threats were incorrect with respect to
the domain assumptions. For example, assuming an existing security measure
for logging user actions on a data base, and reporting a threat to accountability
of a process reading from that data base.

In summary, and in light of the scarcity of security professionals, the trade
off of having more FPs in the analysis results (when using less knowledgeable
analysts) could be acceptable in many organizations, particularly in smaller
ones. For instance, a security expert could be hired to validate the analysis
results at the end, which is a much more light-weight and less costly activity
than performing the entire threat analysis. In our experience, some mistakes
can be also quickly corrected via tool support (e.g., threat locations). However,
some mistakes may require more training on security vulnerabilities and classes

5.6. RELATED WORK 117

of attacks (e.g., to avoid infeasible attack scenarios).
Regarding the security expertise (RQ4) we found that, in the industrial
setting, security expertise may be traded for a faster-paced and less precise
threat analysis. The teams with no previous security expertise were able to
learn both techniques and perform them effectively. This indicates that there
is a benefit in employing less security experienced practitioners to perform
an initial threat analysis, the outcomes of which could be submitted for a
review by security experts. In fact, a recent study [15] reports that agile orga-
nizations currently employ similar strategies for conducting threat analysis.

5.6 Related Work
In this section we position our contributions in the context of related work.
First, we discuss related treat analysis methodologies and techniques organized
with respect to their risk inclusion. Second, we provide an overview of the
related empirical studies.

5.6.1 Threat Analysis with Risk
Risk-first. The main characteristic of risk-first threat analysis is that the out-
comes of risk analysis (i.e., to some extend quantified risk of compromised assets)
are used as input to the threat identification and analysis. However, little exist-
ing literature actually leverages such information during threat identification.

CORAS [25] is a model-driven threat analysis methodology. The approach
provides systematic guidelines and tools (e.g., asset, threat, risk, and treatment
diagrams) to analyze risk during the design phase. After the creation of asset
diagrams (step 3), the analysts conduct a high-level risk analysis, where the
most important assets (and their threats) are identified. Similar to eSTRIDE,
the purpose of this step is to focus the analysis discussion early-on, without
going in deeper detail. Next, the threats are identified by means of structured
brainstorming. But, the threats are not identified only with respect to the
important assets, and afterwards further risk estimation (part of step 6) and
risk evaluation (step 7) is required. In comparison, eSTRIDE suggest a detailed
account of risks (with respect to security objectives of assets) and existing
solutions (treatments) beforehand, and leverages this information to perform
reductions (i.e., the pruned table in Figure 5.2).

Operationally Threat Asset, and Vulnerability Evaluation (OCTAVE) [26–
28] is an asset-centric threat analysis methodology. OCTAVE [26] is organized
into three phases. In the first phase, assets and threats are analyzed, current
practices and vulnerabilities are scrutinized, and security requirements are
derived. In the third phase, threats to the most critical assets are used to
prioritize the security strategy. But, the risk analysis is conducted after all the
threats have been identified. Interestingly, OCTAVE-S [27] is a light-weight
variant targeted to smaller organizations, and has a risk-first flavor. OCTAVE-S
starts with an asset identification and evaluation of security practices. Similar
to eSTRIDE, OCTAVE-S suggests to only identify and analyse threats to
important assets. In contrast, the identified threats are still evaluated for
impact and probability (i.e., are prioritized), while eSTRIDE aims to skip

118 CHAPTER 5. PAPER D

this step entirely. Further, OCTAVE-S does not provide clear guidelines to
determine asset importance.

Risk-last. The common characteristic of risk-last approaches is that the
outcomes of threat analysis are used as input for risk identification and analysis.
In this respect, the works that follow differ from eSTRIDE.

LINDDUN [11] is a privacy threat analysis methodology. LINDDUN is
analogous to STRIDE in that it is model-based (using DFDs), and executes a
similar procedure (e.g., using a privacy threat-to-element mapping table) to
identify privacy threats. In addition, threat tree patterns are provided by the
methodology to help threat identification. After all the privacy threats have
been analyzed and documented with misuse cases, the methodology suggests
to estimate risk levels for each threat (step 8). Notably, the methodology also
provides a mapping of privacy objectives to (more than 40) privacy-enhancing
techniques (PETs) which could be used for planning mitigations.

Recently, Affia et al. [213] proposed a risk management approach for e-
commerce systems. The authors propose to use STRIDE in combination with
Information System Security Risk Management (ISSRM) method. Similar to
eSTRIDE, the proposed technique starts with asset identification. In what
follows, the threats in [213] are identified by performing STRIDE (on the
identified assets) and documented in accordance with the ISSRM method.
Essentially, the risk values of threats are determined as soon as they are
discovered instead of all at once, as in step 4 in Figure 5.2. Further, instead
of using risk information, the authors scope the analysis by eliciting only one
threat per each STRIDE category. In contrast to eSTRIDE, there is no notion
of systematic threat reduction.

Mollaeefar et al. [214] propose a trade-off analysis technique to solve the
problem of analysing risk with multiple stakeholders in the context of privacy
concerns. The authors define the problem as a set of (weighted) threats, and a
set of security controls associated to said threats. To evaluate the final risk,
the technique also takes stakeholders preferences into account. As the threats
are input to their risk evaluation, this technique is a risk-last analysis proposal.

PASTA [29] is a methodology targeting business owners for estimating
risk by means of attack simulation and threat analysis. The methodology
contains seven steps, some of which are similar to the analysis with STRIDE
(e.g., creating data flow diagrams, diagram decomposition, determining trust
boundaries, and risk and impact analysis - as a final step). In comparison to
STRIDE, PASTA suggests a broad list of activities for identifying threats (and
vulnerabilities), and modeling attack scenarios.

Semi-automated & risk-centric. Several techniques focus the analysis around
system assets and include risk as part of their technique, but are semi-automated,
thus the list of prioritized threats is not necessarily the main outcome of the
analysis. Though the following works are certainly risk-centric, it is hard to
determine the exact stage where risk information is used.

Almorsy et al. [44] propose an automated technique using static security
metrics (implemented as OCL constraints) to conduct a trade-off analysis
with respect to system security. One of the inputs to evaluate these metrics
are so-called Security Specification Models, which (among other) contain se-
curity countermeasures, objectives and their priorities. But, the proposed
technique [44] may also leverage system descriptions models, and abstract

5.6. RELATED WORK 119

source code representations in the analysis. Though all this information may
be used in the final trade-off analysis, not all representations are necessary to
evaluate the security metrics. For instance, only two (out of 7) metrics include
a condition about the criticality of components (or functions).

Halkidis et al. [135] have developed an approach for a semi-automated risk
analysis of threats by analyzing annotated UML diagrams. The authors built a
mathematical model of the systems and its defenses, and analyzed it by means
of fuzzy fault trees. Similar to eSTRIDE, Halkidis et al. [135] extend the design
model with existing security countermeasures (e.g., Secure Pipe). But, the
identified vulnerabilities and approximations of risk values are the input for
the automated evaluation of risk.

Chen et al. [121] proposed a risk-driven approach for a trade-off analysis
of Commercial Off The Shelf (COTS) products. In particular, the authors
developed an automated way to extract the vulnerabilities of COTS from a
vulnerability database (i.e., CVE), estimate threat risks, and conduct a trade-off
analysis by analyzing attack paths.

Finally, in the field of security requirements engineering (SRE) several
works [35,130–132,139,215] are centered around system assets (modeled as goals)
and may consider their risks. However, threat analysis is usually performed
before the requirements are elicited. For an account of related SRE works we
refer the interested reader to [208].

5.6.2 Empirical Investigations
Two recent studies [15, 33] conduct case studies to investigate the challenges of
performing a STRIDE analysis. In [15] the authors conduct semi-structured
interviews in four agile organizations to investigate the perceived challenges by
practitioners conducting the analyses. Interestingly, despite the fact that threat
analysis is time-consuming, the practitioners of all four agile organizations
see value in performing threat analysis at regular time intervals. Similar to
this work, the case studies involve industrial practitioners and use the coding
technique to discover patterns in the collected data. But, the focus of the
mentioned works [15, 33] is to record challenges in agile organizations. In
contrast, our work is an empirical comparison of two techniques with respect
to performance and execution.

Recently, Stevens et al. [216] conducted a case study investigating the effi-
cacy of threat analysis in an enterprise setting. The authors develop qualitative
measures to determine the efficacy of the Center of Gravity (CoG) technique.
The CoG originated in the 19th century as a military strategy and is by nature
a risk-first technique. The authors design a six-step protocol (including surveys
and classroom sessions) and involve 25 practitioners in the study. Similarly to
this study, they report a very high accuracy of the results handed-in by indus-
trial practitioners. In addition, they provide empirical evidence for a perceived
usefulness of threat analysis even after 30 and 120 days, which is very promising.
Our study is novel in that it investigates the timeliness of high-priority threats,
and the activity focus of a risk-first and a risk-last technique.

McGraw conducted a study including 95 companies [183]. The study reports
on the security practices that are in place in these companies. The BSIMM
model does not mention STRIDE per se, rather it highlights the importance

120 CHAPTER 5. PAPER D

of threat analysis. Microsoft has not published evidence of the effectiveness
of the STRIDE-per-element technique [9]. Similarly, eSTRIDE (coupled with
eDFD) [182] is a recently proposed technique, evaluated solely on the basis of
an illustration.

Tuma et al. [210] conducted a controlled experiment comparing the two
STRIDE variants, STRIDE-per-element and STRIDE-per-interaction. Similarly
to this work, their study quantitatively measures the precision, and productivity
of both variants. Their study concludes that there is no statistically significant
differences in precision, recall, and productivity of the two STRIDE variants.
Yet, the authors speculate that enlarging the analysis scope from one (or
two) elements to an end-to-end scenario might have an effect on performance.
Their findings are based on quantitative measures, while we adopted a mixed
methodology, including a qualitative analysis of recorded sessions.

Scandariato et al. [10] have analyzed STRIDE-per-element and evaluated the
productivity, precision, and recall of the technique in an academic setting. The
purpose of their descriptive study was to provide an evidence-based evaluation
of the effectiveness of STRIDE. Our study, on the other hand, provides a
comparative evaluation (by means of a controlled experiment) of STRIDE-per-
element and the recently proposed eSTRIDE.

Labunets et al [192] have performed an empirical comparison of two risk-
oriented threat analysis techniques by means of a controlled experiment with
students. The aim of the study was to compare the effectiveness and perception
of a visual technique with a textual technique. The main finding of this study
shows that the visual method is more effective for identifying threats than the
textual one, while the textual method is slightly more effective for eliciting
security requirements.

Existing literature reports on different measures, such as perception of
techniques compared to misuse cases (MUC). The work of Karpati, Sindre,
Opdahl, and others provide experimental comparisons of several techniques.
Opdahl et al. [193] measure the effectiveness, coverage and the perception of
the techniques. Karpati et al. [194] present an experimental evaluation of MUC
Map diagrams focusing on identification of not only vulnerabilities but also
mitigations. Finally, Karpati et al. [195] have experimentally compared MUCs
with mal-activity diagrams in terms of efficiency.

5.7 Threats to Validity
With respect to the external threats to validity, we consider the threat to
generalizability of the results. The study was conducted in two different
automotive organizations, yet it is not clear to what extent can our findings be
carried over to organizations from other domains. In addition, the number of
participants was small (13 in total).

With respect to the internal threats to validity, we mention the confounding
factors that may have influenced the results. The most important confounding
factor is team dynamics. The performance of a team might depend on how
well the participants work together. It is virtually impossible to control for this
factor in an industrial context, as participants are selected based on convenience
and availability.

5.8. CONCLUSION 121

Another potential confounding factor is the different background knowledge
across teams. We control for this factor by dedicating a whole workshop (3 in
Org A, and 5 hours in Org B) to training the participants. In addition, we
have sent out a short exit survey (with about 10 questions) where we asked
the participants whether they felt sufficiently prepared to carry out the task.
In both organizations, participants felt like they had a clear understanding of
the task, were sufficiently prepared for it, and had a very good understanding
of the industrial case under analysis.

We also mention the risk of confirmation bias as some of the researchers
are authors of one of the techniques. We mitigated this threat by discussing
our assessments (as a form of quality check) with participants (in Org B) and
reference experts (in Org A).

Finally, we could not replicate the study in Org B with exactly the same
methodology, as the organization did not allowed us to tape-record the sessions.
Some measures had to be adapted, which might have led to more imprecise
results.

5.8 Conclusion
This study investigates the benefits and shortcomings of performing a risk-first
(eStride [182]) compared to risk-last (Stride [9]) threat analysis in an in-
dustrial setting. We conducted two case studies with industrial participants
employed by two organizations (based in different countries). In this setting,
we gathered empirical evidence about the performance and execution of the
two techniques. The contributions of this work are three-fold: (i) a quantitative
comparison of performance, (ii) a quantitative and qualitative comparison of
execution, and (iii) a comparative discussion of the benefits and shortcomings
of the two techniques. This study found no differences in the productivity and
timeliness of discovering high-priority security threats. Yet, we showed that the
risk-first approach produces twice as many high-priority threats (in both orga-
nizations). On the other hand, the risk-last technique found more medium and
low-priority threats. Further, we find that security expertise may be traded for a
faster-paced and less precise threat analysis To find high-priority threats sooner
(in addition to their complete account), the eStride procedure can be easily
tailored to an out-side-in diagram exploration strategy. An interesting future
direction could be observing the performance of the two techniques by conduct-
ing a longitudinal study to understand whether eStride’s benefits (prioritizing
the discovery of high-priority threats) out-weight the limitations (required
effort to build eDFDs and sacrificed coverage of low-prioritized threats).

122 CHAPTER 5. PAPER D

Chapter 6

Paper E

This chapter is based on
Flaws in Flows: Unveiling Design Flaws via Information

Flow Analysis,

written by
K. Tuma, M. Balliu, and R. Scandariato,

published in
Proceedings of the International Conference on Software

Architecture (ICSA), 2019.

123

Abstract
This paper presents a practical and formal approach to analyze security-centric
information flow policies at the level of the design model. Specifically, we focus
on data confidentiality and data integrity objectives. In its guiding principles,
the approach is meant to be amenable for designers (e.g., software architects)
that have very limited or no background in formal models, logics, and the like.
To this aim, we provide an intuitive graphical notation, which is based on the
familiar Data Flow Diagrams, and which requires as little effort as possible in
terms of extra security-centric information the designer has to provide. The
result of the analysis algorithm is the early discovery of design flaws in the form
of violations of the intended security properties. The approach is implemented
as a publicly available plugin for Eclipse and evaluated with four real-world
case studies from publicly available literature.

124 CHAPTER 6. PAPER E

6.1 Introduction
Security and privacy threats to software systems are a significant concern in
many organizations, in particular due to recent legislations regarding data
privacy (e.g., GDPR) and upcoming standards about security engineering
(e.g., ISO 21434). In essence, there is an increasing push towards adopting
methods and techniques that provide security and privacy assurance from
the very beginning of a software development project. In particular, this
paper focuses on the (architectural) modeling phase, when the structure of
a software system is defined. In this context, threat analysis techniques like
STRIDE [9] and LINDDUN [217] have gained significant popularity in the
industry. Such techniques use Data Flow Diagrams (DFDs) as the notation of
choice to represent the key computing elements in a system and to describe
how information flows among them. The intrinsic value of such approaches is
not under dispute. However, these approaches have two limitations. First, the
DFD notation is geared towards business analysts. As such, the notation is
very informal as there is no formal semantics attached to the model elements in
a DFD. Second, threat analysis techniques like STRIDE hinge on the expertise
of the analyst and do not provide any guarantee about the correctness and
completeness of the analysis results [10].

Contribution. This paper has the ambition to lift the level of preciseness and
automation used in the security-centric validation of design models. In partic-
ular, we are inspired by code-level information flow analysis techniques [77, 85],
which are here raised to the level of abstraction of DFD-like design models. To
this aim, the first contribution of this paper is a lightweight extension of the
modeling capabilities provided by DFDs. In particular, the designer (e.g., soft-
ware architect) has to provide the intended security policy for the information
assets that flow in the system. For instance, the designer could specify that the
geo-location of the user is private (high confidentiality), and the social network
feed is public (low confidentiality). This is achieved by adding a security label
to the data flows in the design diagram. In this paper, we focus on data
confidentiality and data integrity properties. Additionally, the designer has to
specify an abstract input-output security contract for the computational nodes.
For simplicity, this is done by choosing from a small set of predefined options.
For instance, the designer can specify that the asset on an input flow is copied
to an output flow. The second contribution of this paper is a tool-supported,
formally-based flow analysis technique that leverages the above-mentioned
information to propagate the security labels across the design model (similar to
taint analysis [218]). The result of the analysis algorithm is the early discovery
of design flaws in the form of violations of the intended security policies. The
analysis technique enables the enforcement of security contracts by means of
static analysis and for security properties such as non-interference and declassi-
fication [77,219]. The approach is implemented using the Viatra framework and
packaged as a publicly available plugin for Eclipse [220]. Further, the approach
is evaluated with four real-world case studies from publicly available literature.

Novelty. As discussed in the related work, some approaches have automated
the threat analysis of DFDs by means of pattern-matching techniques, however,
they do not provide soundness guarantees [221]. On the other hand, previous
attempts to provide a formal semantics for DFDs have often resulted in a

6.2. OVERVIEW OF THE APPROACH 125

complicated language, hence losing the intuitive flexibility of DFDs [84]. This
paper aims at achieving the benefits of a formal analysis technique by retaining
the simplicity and intuitiveness of DFDs.

Relevance. Our approach is related to existing secure design practices
and can be used to support secure software development. Further, it could
easily synergize with existing code-level analysis techniques. In particular,
our technique rests on the assumption that the contracts specified by the
designer are correct, namely for what concerns the input-output relationships
at each processing node. These contracts could be translated to code-level
properties and verified at the implementation level. The rationale for a two-tier
analysis approach (i.e., model and code) lies on the observation that code-level
information flow analysis techniques do not scale well to large systems. Hence,
it is preferable to verify localized contracts on smaller, amenable code units
and delegate the verification of global, end-to-end policies to the model level.

In conclusion, we remark that our approach can also be used in the context
of privacy, e.g., to analyze unintended flows of personal information in a
system. Interestingly, as the modeling notation is intentionally kept simple, the
approach can be used as a communication medium among several stakeholders:
the privacy officers (who identify the privacy-sensitive information), the software
architects (who specify the input-output behavior of the processing nodes),
and the developers (who have to enforce such behavior in the code).

The rest of the paper is organized as follows. Section 6.2 presents an overview
of the approach. Section 6.3 describes a formal model for the security analysis of
DFDs, including a description of a security specification language and the under-
lying semantics of Security Data Flow Diagrams (SecDFD) labels. Section 6.5
describes the real-world case studies and evaluation results. Section 6.6 discusses
the relation between the global design-level analysis and the local code-level
analysis, and considers limitations of our work. Finally, Section 6.7 discusses the
related work, while Section 6.8 presents future work and concluding remarks.

6.2 Overview of the Approach
The analysis approach relies on modeling a Security Data Flow Diagram
(SecDFD) using a Domain Specific Language (cf. Section 6.4). Designers are
required to invest some effort in modeling the appropriate components to use
our plugin. Example SecDFDs used for the evaluation are available in the
repository [220]. This section describes the SecDFD and gives an overview of
the analysis approach by means of an example.

SecDFD. In a nutshell, a SecDFD is composed of interconnected nodes
enriched with security concepts. Generally, nodes represent a piece of code as a
series of commands. Each command might take some input from an incoming
flow and transform it into an output. Inspired by the model in [222], we define
the security semantics for an initial set of commands (dubbed ‘node types’).
The latter differ with respect to the security contracts, as depicted in Table 6.1.
We define four such security contracts.

• Encrypt or hash contract. The contract for encrypting (possibly several)
assets always results in propagating a low (public) label on the output
flow(s).

126 CHAPTER 6. PAPER E

Table 6.1: Type of nodes and their semantics.

Node type Security contract

Compare, Use, Join, Split Join
Forward, Copy Copy
Encrypt Encrypt
Decrypt Decrypt

• Decrypt contract. If the input asset is low, decrypting it results in
propagating a low label on the output flow. However, if the input asset is
high, decrypting it results in propagating a high label on the output flow.

• Join contract. The propagation function for joining two or more assets
propagates the label equivalent to most restrictive input asset. This
contract is applied to nodes comparing, using, joining, and splitting
assets.

• Copy contract. This propagation function will copy the labels of the
input assets to the corresponding output flows. This contract is applied
to nodes copying and forwarding assets.

Inspired by eDFDs [182], SecDFDs are enriched with assets, their traces
and security objectives, and security policies. We focus on tangible information
assets and track them from the source node to target nodes. The asset source
is a node in the diagram where an asset is first created. The asset target(s) are
either nodes in the diagram where an asset rests (where it is stored permanently)
or nodes in the diagram where a functionality makes use of an asset (where it has
an impact on the application logic). We distinguish between a global security
policy and a local security policy. The designer defines the global security
policy by specifying security objectives of initial system assets and attacker
observations (i.e., attacker zones). The global security policy stipulates that no
information from a confidential input asset flows to a public output asset. The
local security policy is defined at the level of nodes, and it can be parametric on
the security labels of input and output flows. Attackers are commonly modeled
as individual malicious nodes interacting with the system on a particular level
of granularity. In this work, we explore the possibility to model the attacker
as a set of nodes. We refer to the “attacker zone” as a non-empty set of node
elements whose vulnerabilities can be exploited by attackers. For each attacker
zone the designer can specify the capabilities of attackers launching attacks in
that zone. For confidentiality, the attacker can either observe (read) an asset
or not. Designers are able to also run the analysis with a more conservative
attacker model, where the attacker can observe assets at all nodes. Finally, the
analysis identifies design flaws where the global policy fails in the model. A
formal specification language for the SecDFDs is described in Section 6.3.

Local temporal dependencies. The standard DFD does not require to define
the sequence of events. However, if a node has several propagation functions
the order in which these functions are executed is important. For instance,
forward(c); join(a, b) 7→ c is not equivalent to join(a, b) 7→ c; forward(c). In
the first case, c is forwarded before it is created, thus a label propagation of
such a sequence would give a faulty result. In the second case, however, a and b
are first joined into a new asset c. Only after the join function is executed, the
asset c is forwarded. Our model allows to specify such temporal dependencies.

6.2. OVERVIEW OF THE APPROACH 127

15. BobLoc,
AliceLoc

15. BobLoc,
AliceLoc

4

Social
Network

Friend Map

Alice

SNAPP

Create
Map 1. AppCode

2. Request location

3. R
equest location

4. BobLoc,
AliceLoc

5. BobLoc, AliceLoc

7. Request map

6. Request
map

8. MapCode

12. Map

9. MapCode

11. BobLoc, AliceLoc
13. Map

14. M
ap

Local DS

Attacker z. 1Attacker z. 2

Google Map
provider

Map
services

10. BobLoc, AliceLoc, Map

Social
Network

Friend Map

Alice

SNAPP

Create
Map 1. AppCode

2. Request location

3. R
equest location

4. BobLoc,
AliceLoc

5. BobLoc, AliceLoc

7. Request map

6. Request
map

8. MapCode

12. Map

9. MapCode

11. BobLoc, AliceLoc
13. Map

14. M
ap

Local DS

Attacker z. 1Attacker z. 2

Google Map
provider

Map
services

10. BobLoc, AliceLoc, Map

Data flow (unlabeled)
Data flow (labeled as high) Asset source

Asset target

Asset: objective (priority)
Data store External

entity
Data flow (labeled as low) ProcessAttacker zone

(a) The SecDFD of FriendMap before the analysis.

15. BobLoc,
AliceLoc

15. BobLoc,
AliceLoc

4

Social
Network

Friend Map

Alice

SNAPP

Create
Map 1. AppCode

2. Request location

3. R
equest location

4. BobLoc,
AliceLoc

5. BobLoc, AliceLoc

7. Request map

6. Request
map

8. MapCode

12. Map

9. MapCode

11. BobLoc, AliceLoc
13. Map

14. M
ap

Local DS

Attacker z. 1Attacker z. 2

Google Map
provider

Map
services

10. BobLoc, AliceLoc, Map

Social
Network

Friend Map

Alice

SNAPP

Create
Map 1. AppCode

2. Request location

3. R
equest location

4. BobLoc,
AliceLoc

5. BobLoc, AliceLoc

7. Request map

6. Request
map

8. MapCode

12. Map

9. MapCode

11. BobLoc, AliceLoc
13. Map

14. M
ap

Local DS

Attacker z. 1Attacker z. 2

Google Map
provider

Map
services

10. BobLoc, AliceLoc, Map

Data flow (unlabeled)
Data flow (labeled as high) Asset source

Asset target

Asset: objective (priority)
Data store External

entity
Data flow (labeled as low) ProcessAttacker zone

(b) The SecDFD of FriendMap after the analysis.

30

Get
location

2. 𝐿𝑜𝑐! Compute
distance

Send
distanceTarget

1. 𝐿𝑜𝑐"Alice

Restaurant

3. 𝐿𝑜𝑐"

5. 𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒

6. 𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒

4. 𝐿𝑜𝑐!

Data flow (unlabeled)
Get

location
2. 𝐿𝑜𝑐! Compute

distance
Send

distance1. 𝐿𝑜𝑐"Alice

Restaurant

3. 𝐿𝑜𝑐"

5. 𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒4. 𝐿𝑜𝑐! Data flow (labeled as high) Asset source
Asset target

Asset: objective (priority)

Data store

External
entity

Data flow (labeled as low)
Process

Attacker zone

Target
6. 𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒

Get
location

Get
location

2. 𝐿𝑜𝑐! Compute
distance

Send
distanceTarget

1. 𝐿𝑜𝑐"Alice

Restaurant

3. 𝐿𝑜𝑐"

5. 𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒

6. 𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒

4. 𝐿𝑜𝑐!

Get
location

(c) Legend.

Figure 6.1: A SecDFD of FriendMap before the analysis (a), after the analysis
(b), and legend (c).

128 CHAPTER 6. PAPER E

FriendMap example. Figure 6.1(a) depicts the SecDFD of a real-world
application for a distributed computing platform developed by Liu et al. [223].
The platform’s programming language is based on Java Information Flow
(JIF) [224] and it controls the computation and data through security type
annotations representing security policies. The application enables users (e.g.,
“Alice”) to create a map of their friends (e.g., “Bob”) and to post it on a social
network. A client app on Alice’s device first downloads the application code
and executes it locally. The application fetches the locations of Alice and Bob
from the social network and requests a map’s code from a third-party map
provider (e.g., Google Maps). The map is then created with the respective
locations. Finally, Alice can also choose to post this map on the social network.

Analysis algorithm. Algorithm 1 shows the procedure for the analysis.
In essence, the analysis propagates security labels according to local security

Data: SecDFD
Result: SecDFD’
derive security labels of initial flows;
while every graph node is not visited do

for function : ordered list of propagation functions do
propagate security label on the output flow;

end
visit next node;

end
if end-to-end view then

query graph for end-to-end flow;
end
SecDFD’ = fire global policy constraints on graph;

Algorithm 1: Analysis of a SecDFD.

policies. The input of the analysis is an instance of a SecDFD (similar to the one
presented in Figure 6.1(a)). First, the security labels of initial flows are derived
from the global security policy. After this step all flows are unlabeled, except
for the initial flows (see flows 1, 4, 8, 10 and 15 in Figure 6.1(a)). If the most
restrictive security objective on the flow is low, the label is derived as low (e.g.
flow 1). If there is one confidentiality objective on a flow the label is derived as
high (e.g. flow 4). The global policy dictates that no confidential assets are
allowed to be revealed to the attacker. Thus, the security labels of input flows
to malicious nodes are derived based on the attacker zone (flow 15). Second,
all nodes of the SecDFD are visited. At each visit, propagation functions
are executed in the proper order. Every propagation function propagates the
security labels according the respective security contract. For instance, in
Figure 6.1(a) the Alice node triggers several events for which the correct order
is listed in Table 6.2. If the event to forward the location (event 5) triggers right
after the AppCode is executed (event 1), then the labels will first propagate on
flow 11 (Figure 6.1(a)). When propagating labels, the assets determine which
input flows will affect the propagation. In this case, flows 5 and 10 are the
input flows transporting the locations. The current labels of flows 5 and 10
are initialized as low, therefore the propagation would incorrectly label flow
11 as low. Instead, the correct propagation requires event 2 to occur before

6.3. SECURITY ANALYSIS FOR DFDS 129

Table 6.2: The sequence of events for node Alice.

Event Input asset Output asset

1 Execute AppCode -
2 Forward - Request location
3 Forward - Request map
4 Execute MapCode -
5 Forward BobLoc, AliceLoc BobLoc, AliceLoc
6 Store BobLoc, AliceLoc, Map -
7 Forward Map Map

event 5. As a result, flow 11 is correctly labeled as high. After this step, all
the flows in the graph are labeled and the analysis terminates. Optionally,
designers can trace the assets with an end-to-end view. Figure 6.1(b) shows
the state of the SecDFD after label propagation. The analysis outcome is the
result of verifying the global policy over the annotated SecDFD’. Design flaws
are identified where the verification fails (e.g., flow 15).

6.3 Security Analysis for DFDs
This section presents a formal model underpinning the security analysis at the
level of Data Flow Diagrams, as described in Section 6.2. The analysis focuses
on data confidentiality and data integrity objectives of a system at the time of
system’s architecture design. The main objective is to introduce a lightweight
model that features the advantages of DFDs such as simplicity and usability, yet
it contains enough information to reason about the security aspects of a system
in a formal manner. Drawing on the theory of information-flow analysis [77], we
introduce a security specification language for a system’s design that describes
the security objectives at the level of individual processes and functions of the
system, and their interactions. The specification language supports a system
designer in expressing flexible security policies locally for each process. Further,
it enables an automatic procedure to analyze system-wide security objectives
in an end-to-end fashion, thus unveiling potential security flaws at design time.

6.3.1 A security specification language
We now introduce the security specification language for DFDs. A process
consists of a set of function signatures f(i1, · · · , in : o) using a (possibly
empty) set of input assets i1, · · · , in to compute an (possibly empty) out-
put asset o. We write f(i1, · · · , in :) and f(: o) whenever the set of input
and output assets is empty, respectively. We define the interaction between
processes through function composition, by linking the output of a func-
tion to the input of another function. As an example, consider the function
signatures getAliceLocation(iA : oA) and getBobLocation(iB : oB) that re-
trieve the location iA of Alice and location iB of Bob, and forward them
to the output channels oA and oB, respectively. Consider also a function
signature computeDistance(loc1, loc2 : dist) that computes the distance dist
between locations loc1 and loc2. We can model a DFD that uses the lo-
cations of Alice and Bob to compute their distance by composing function

130 CHAPTER 6. PAPER E

Figure 6.2: Security lattice for confidentiality.

signatures as follows: getAliceLocation(iA : oA); getBobLocation(iB : oB);
computeDistance(oA, oB : dist). Note that the matching between function
inputs and outputs allows to model temporal dependencies between different
functions in the DFD. Specifically, the outputs of the first two functions are
used as inputs to the third function. In general, these dependencies induce
a partial order between function signatures, which we use to capture the de-
pendencies in a DFD (as represented by arrows). For simplicity, we assume
a linearization of evaluation order between function signatures of a DFD, as
denoted by the sequential composition of function signatures.

To reason about the security objectives of a system, we enrich function
signatures with security contracts that enable a system designer to express the
security policies locally, for each function and process. We then leverage the
sequential composition of security contracts to analyze system-wide security
policies over DFDs.

Concretely, we enrich the inputs and outputs of a function signature with se-
curity labels for confidentiality and integrity. For a given (input or output) asset
x, we write (C(x), I(x)) to denote the pair of confidentiality and integrity labels
of asset x, respectively. For confidentiality, this means that the information
stored in the asset x can only flow to assets that are at least as confidential as
C(x), and, for integrity, it means that the information stored in the asset x can
only affect assets that are at most as trustworthy as I(x). In this section we fo-
cus on confidentiality, noting that integrity is similar through dualization [225].

We assume a bounded lattice of security labels (L,v,t,u). A label ` ∈ L
represents the confidentiality level of an asset. We write v to denote the
ordering relation between security labels and, t and u to denote the join and
meet lattice operators, respectively. We write > and ⊥ to denote the top and
the bottom element of the lattice. Figure 6.2 depicts a security lattice that
models the confidentiality objectives for two principals, Alice and Bob. The
lattice consists of 4 elements L = {{Alice,Bob}, {Alice}, {Bob},∅}, where
> = {Alice,Bob} and ⊥ = ∅. The ordering relation v (displayed by arrows)
is set inclusion ⊆, and the join and meet operators correspond to set union
∪ and set intersection ∩, respectively. For instance, an asset x labeled as
{Alice,Bob} is more confidential than an asset y labeled as {Alice}, as defined
by the ordering relation {Alice} ⊆ {Alice,Bob}. Hence, the asset y can flow
to the asset x, but not vice versa. In fact, the asset x requires the security
clearance of both Alice and Bob in order to be observable, while the asset
y only requires the security clearance of Alice. An attacker is an observer
that can see information with a given security label from the lattice. For

6.3. SECURITY ANALYSIS FOR DFDS 131

instance, if an attacker has security label {Alice}, the attacker has the security
clearance to observe information that is at most as confidential as {Alice}. In
particular, the attacker cannot observe assets labeled as {Bob} or {Alice,Bob}.
We remark that by fixing the security label of the attacker, the lattice can be
reduced to a two-element lattice, where any asset below the attacker’s label
in the lattice is considered as public, otherwise it is considered as confidential.
In what follows, we use the two-level security lattice L = {L,H} consisting of
level H (high) for assets containing confidential information and level L (low)
for assets containing public information. Further, we have that L v H and, for
all `1, `2 ∈ {H,L}, `1 t `2 = L only if `1 = `2 = L. Finally, we assume that
the attacker has security label L, hence the goal is to prevent the attacker from
learning any information about assets labeled as H.

We lift function signatures to security contracts f(i`1
1 , · · · , i`n

n : olbl(`1,··· ,`n)),
where `1, · · · , `n ∈ L, and lbl : L× · · · × L 7→ L is a labeling function, mapping
input labels to an output label. We sometimes write lbl or its definition for
lbl(`1, · · · , `n). Security contracts allow a system designer to assign security
labels to the input and output assets of a function. Moreover, the labeling func-
tion allows to specify how the security label of input assets affects the security
label of an output asset. Security contracts have the unique property of being
parametric on the security labels of input assets, and enforcing relationships
between input and output labels. Label parametricity is an important feature
at the design phase where processes and functions are designed in isolation and
the system’s security policy may still be unknown. In fact, the same process or
function can have different security labels, depending on the context in which it
is used. Finally, we remark that concrete (non-parametric) security labels can
still be expressed through constant labeling functions, as in lbl(`1, · · · , `n) = H.

Because security contracts are an extension of function signatures with
security labels, they can be composed through function composition in a similar
manner. To prevent information leaks from confidential assets to public assets,
we can ensure that the output label of a security contract is at most as confiden-
tial as the input label of the corresponding security contract. We achieve this
by using the ordering relation from the security lattice, as in f(: x`1); g(x`2 :),
where `1 v `2. The following example elucidates the security contracts.
Example 1 Consider the design of a system that calculates the distance be-
tween a public location, e.g., the location of a restaurant labeled as L, and a
confidential location, e.g., the location of user Alice labeled as H, and sends
the distance to the user Charlie labeled as L. A system designer specifies the
following security contracts:

• getLocation(i`1 : olbl(`1)) and lbl(`1) = `1, constraining the output label
to be the same as the input label.

• computeDistance(loc`1
1 , loc

`2
2 : distlbl(`1,`2) and lbl(`1, `2) = `1 t `2, con-

straining the output label to be the same as the join of input labels.
• sendDistance(i`1 : olbl(`1)) and lbl(`1) = `1, constraining the output label

to be the same as the input label.
The system can be designed by compositing the security contracts as follows:
getLocation(i`A

A : loc`A

A);getLocation(i`R

R : loc`R

R); computeDistance(loc`A

A , loc`R

R :
dist`At`R);

sendDistance(dist`C : o`C), as displayed in Figure 6.3.
A designer can instantiate the DFD with a security policy for the source

132 CHAPTER 6. PAPER E

30

Get
location

2. 𝐿𝑜𝑐! Compute
distance

Send
distanceTarget

1. 𝐿𝑜𝑐"Alice

Restaurant

3. 𝐿𝑜𝑐"

5. 𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒

6. 𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒

4. 𝐿𝑜𝑐!

Data flow (unlabeled)
Get

location
2. 𝐿𝑜𝑐! Compute

distance
Send

distance1. 𝐿𝑜𝑐"Alice

Restaurant

3. 𝐿𝑜𝑐"

5. 𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒4. 𝐿𝑜𝑐! Data flow (labeled as high) Asset source
Asset target

Asset: objective (priority)

Data store

External
entity

Data flow (labeled as low)
Process

Attacker zone

Target
6. 𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒

Get
location

Get
location

2. 𝐿𝑜𝑐! Compute
distance

Send
distanceTarget

1. 𝐿𝑜𝑐"Alice

Restaurant

3. 𝐿𝑜𝑐"

5. 𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒

6. 𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒

4. 𝐿𝑜𝑐!

Get
location

Figure 6.3: A security-centric Data Flow Diagram before the analysis.

30

Get
location

2. 𝐿𝑜𝑐! Compute
distance

Send
distanceTarget

1. 𝐿𝑜𝑐"Alice

Restaurant

3. 𝐿𝑜𝑐"

5. 𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒

6. 𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒

4. 𝐿𝑜𝑐!

Data flow (unlabeled)
Get

location
2. 𝐿𝑜𝑐! Compute

distance
Send

distance1. 𝐿𝑜𝑐"Alice

Restaurant

3. 𝐿𝑜𝑐"

5. 𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒4. 𝐿𝑜𝑐! Data flow (labeled as high) Asset source
Asset target

Asset: objective (priority)

Data store

External
entity

Data flow (labeled as low)
Process

Attacker zone

Target
6. 𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒

Get
location

Get
location

2. 𝐿𝑜𝑐! Compute
distance

Send
distanceTarget

1. 𝐿𝑜𝑐"Alice

Restaurant

3. 𝐿𝑜𝑐"

5. 𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒

6. 𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒

4. 𝐿𝑜𝑐!

Get
location

Figure 6.4: A security-centric Data Flow Diagram after the analysis.

and the destination assets. Concretely, the designer defines the security policy
by instantiating the input assets as `A = H, `R = L and the output asset as
`C = L (cf. Figure 6.3, top). Intuitively, the design above is not secure since,
by observing the distance between the confidential location of Alice and the
public location of the restaurant, Charlie (an attacker with security clearance L)
can learn Alice’s location. The design flaw can be discovered by solving the con-
straints between the security labels globally in the DFD. The output label of the
distance contract is `At`R = H, however the input label `C = L, which violates
the security constraint `A t `R v `C , since H 6v L (cf. Figure 6.3, bottom).

6.3.2 Semantics of SecDFD labels
We now present a formal account of security contracts and their use in un-
veiling security flaws in DFDs. Figure 6.5 displays the syntax of our security
specification language. We fix a two-level lattice L = {L,H}. Security labels
l consist of concrete labels (L and H) and label variables (` ∈ L). Security
label expressions e consist of security labels l and lattice operations over se-
curity labels (e1 ⊕ e2), where ⊕ ∈ {v,t}. We use label expressions to define
the security labeling function lbl, and to enforce constraints between security
contracts. A Security Data Flow Diagram (SecDFD) consists of (sequential
compositions of) security contracts f(il1 , · · · , iln

n : oe), where e is the definition
of the labeling function connecting input labels to output labels. We use two
special security contracts, src(: ol) and dst(il :), to represent explicitly the
source and destination assets of a SecDFD, respectively. We use source and
destination assets to define a global security policy over a SecDFD. Moreover,

6.3. SECURITY ANALYSIS FOR DFDS 133

l ::= L | H | `
e ::= l | e1 ⊕ e2

dfd ::= f(il1
1 , · · · , iln

n : oe) | src(: ol) | dst(il :)
| decl(iH : oL) | dfd1; dfd2

Figure 6.5: SecDFD Grammar.

Contr
Γ(ik) v σ(lk)

Γ′′ = Γ[ik 7→ σ(lk)] Γ′ = Γ′′[o 7→ σ(e)] k ∈ {1, · · · , n}
σ ` Γ {f(il1

1 , · · · , iln
n : oe)} Γ′

Src
Γ′ = Γ[o 7→ σ(l)]

σ ` Γ {src(: ol)} Γ′

Dst
Γ(i) v σ(l)

σ ` Γ {dst(il :)} Γ

Decl
Γ′ = Γ[o 7→ L]

σ ` Γ {decl(iH : oL)} Γ′

Seq
σ ` Γ {dfd1} Γ′′ σ ` Γ′′ {dfd2} Γ′

σ ` Γ {dfd1; dfd2} Γ′

Figure 6.6: Semantics of SecDFD labels.

we use the declassification contract decl(iH : oL) to downgrade the security of
confidentiality information and consider it as public, e.g., after an encryption
or hashing operation. We remark that our specification language captures the
DFD node types from Section 6.2.

Figure 6.6 depicts the semantics of labels for SecDFD. For a SecDFD dfd,
security configurations have the form σ ` Γ {dfd} Γ′, where Γ and Γ′ are
security environments of type Var 7→ e and σ is a label environment of type
LVar 7→ {L,H}. We write Var for the set of variables that are used in the
security contracts, and LVar for the set of parametric labels, i.e., ` ∈ LVar .
The security environment Γ keeps track of security labels during the execution
of a SecDFD. The label environment σ instantiates parametric labels with
concrete labels. We write Γ(i) for the value of a variable i in Γ, and σ(e)
for the value of an expression e in σ. Moreover, Γ[i 7→ l] denotes a security
environment Γ with variable i assigned the security label l. We also write
(don’t care), whenever a symbol is not important.

Intuitively, Γ describes the security labels of variables before the analysis of
dfd, and Γ′ describes the security label of variables after the analysis. Moreover,

134 CHAPTER 6. PAPER E

σ describes an instantiation of parametric labels with concrete labels. The
rules can be read as follows: If the premises of a rule are satisfied in a security
environment Γ and a label environment σ, i.e., none of the security constraints
fails, the security contract executes and yields the security environment Γ′.

Each rule models the process of label propagation, the generated security
constraints, and the update of the security environment. The rule Contr
ensures that whenever a security contract is executed, the input labels of the
matching contracts are upper bounded by the security labels of input of the
current contract (cf. Γ(ik) v σ(lk)). This constraint prevents insecure flows
from an output of a confidential contract to an input of a public contract.
Moreover, we update the security environment by first updating the label of
the input variable (cf. Γ′′ = Γ[ik 7→ σ(lk)]), and then evaluating the label
expression in the new security environment Γ′′ (cf. Γ′ = Γ′′[o 7→ σ(e)]). Finally,
the analysis produces the security environment Γ′. The rule Src updates the
security environment with the label of an input asset. We use this rule to
define the security policy for the input assets of a SecDFD. The rule Dst
checks whether or not the security label of the input to an output asset is upper
bounded by the security label of that asset. We use the Dst rule to prevent
insecure flows from confidential inputs to public assets, e.g., attacker zones.
The rule Decl downgrades the security label of confidential input by making
the output public. Finally, the rule Seq models the sequential composition of
two SecDFDs by matching the corresponding security environments.

The security analysis targets insecure flows of information from sources
labeled as confidential to destinations labeled as public. To achieve this, a
system designer defines a global security policy by specifying security labels
for sources and destinations. Following the rules in Figure 6.6, we implement
a static analyzer that infers a label environment σ (if it exists) and verifies
the correctness of a security policy over the SecDFD. The inference algorithm
uses basic constraint solving over the security lattice [85]. Section 6.4 provides
details about our implementation.
Definition 1 (Security policy for SecDFD) Given a set of source assets
{src(: oli

i)} and a set of destination assets {dst(ilj

j :)}, a security policy is an
assignment of concrete security labels to the source and destination assets, i.e.,
Γ0[oi 7→ li, ij 7→ lj] and li, lj ∈ {L,H}.
Definition 2 (SecDFD security) A SecDFD dfd is secure wrt. security
policy Γ0 if there exists a label environment σ such that for any pair of matching
security contracts c1 = (: xl1) and c2 = (xl2 :), σ(l1) v σ(l2).

Intuitively, the security condition requires that there is never a flow in the
SecDFD from a confidential output of a contract to a public input of a matching
contract. In particular, this ensures the absence of flows from confidential
sources to public destinations, thus enforcing the security policy. The following
theorem shows that the rules in Figure 6.6 enforce the security condition in
Definition 2.
Theorem 1 Given a SecDFD dfd, a label environment σ, and security policy
Γ0, then dfd is secure wrt. Γ0 only if σ ` Γ0 {dfd} Γ′, for some Γ′.
The theorem can be proved by case analysis on the type of matching security
contracts and the rules in Figure 6.6. We refer the interested reader to the full
version of the paper [220].

6.4. IMPLEMENTATION 135

29

Transform

EMF + Xtext Viatra + Xtend Propagate

OCL

Verify

Transform

EMF + Xtext Viatra OCL

Propagate Verify

Figure 6.7: The plugin toolchain.

6.4 Implementation
Figure 6.7 shows the plugin toolchain. The approach is implemented as a
publicly available Eclipse plugin [220] using the Eclipse Modeling Framework
(EMF). We build two meta-models: for modeling SecDFDs, and for end-
to-end security views. In addition, we built an external Domain-Specific
Language (DSL) using the Xtext framework for modeling SecDFDs. The
DSL is accompanied by a simple grammar and a textual syntax. We use
the Viatra query engine and the Xtend language to transform SecDFDs to
simple graphs. The new graph is visited with a recursive Depth First Search
(DFS) algorithm. At each node, the labels of outgoing flows are propagated
according to the node semantics. Afterwards, we statically validate the global
policy over the resulting graph model. To this aim we write constraints in the
Object Constraint Language (OCL). Optionally, the graph model is queried for
end-to-end asset traces, namely, all graph elements handling a particular asset.
Note that our implementation currently supports specifying local temporal
dependencies (at node level) with flow enumeration.

6.5 Evaluation
We evaluate our approach by running the analysis on several open source
projects. First, we test our approach on microbenchmarks from DroidBench,1
an open test suite for evaluating the effectiveness of taint-analysis tools for
Android apps. Second, we model four realistic applications, namely FriendMap,
Hospital, JPmail, and WebRTC. The analysis of all four applications does not
produce any false positives. We have analyzed alternative models with injected
design flaws (or security solutions) for all four applications. Further details
about the evaluation are available in the repository [220].

We have tested our plugin on several inter-component communication
examples. These small examples have built-in design flaws. They were used
to verify that the propagation functions work as expected and are able to
identify built-in design flaws. The propagation functions were able to identify
design flaws in all initial tests. Together with the core security analysis from
Section 6.3, the microbenchmark increased our confidence on the correctness

1https://github.com/secure-software-engineering/DroidBench

https://github.com/secure-software-engineering/DroidBench

136 CHAPTER 6. PAPER E

of our analysis tool.

6.5.1 FriendMap
We have evaluated our approach on the example described in Section 6.2.
Figure 6.1(b) depicts the results of the analysis.

The global policy for this scenario causes the inference of low labels for non-
confidential assets. High labels are inferred on flows originating from sensitive
locations of Bob and Alice. When fired, the security contracts cause the
propagation of high labels to parts of the diagram (e.g., flows 11 and 12). The
map code can be malicious, and attempt to leak the location from the browser. A
static policy check is able to identify this flaw on flow 15. This is the only design
flaw the analysis discovers under attacker zones 1 and 2 (see Figure 6.1(b)).

6.5.2 Hospital
We evaluated the plugin on an application for controlling access to sensitive
patient data [223]. We refer the reader to the full paper [220] for figures
depicting the analysis. The access control policy and the application code are
first loaded to the Employee client (i.e. mobile application). The employees
can sent a request to read the list of patients, including the patient HIV status.
The request is forwarded to a node that handles read requests. Depending
on the given permissions, the node retrieves the sensitive list of patients and
forwards it to the employee node, where it is stored on a server. A similar
node handles requests for modifying the patient list. We model the attacker
as a node attempting to observe the list of patients. The global policy causes
low labels on flows where non-confidential assets originate from. However,
confidential assets (Patient List and Modified List) cause high labels on the
corresponding (origin) flows. The label propagation causes high labels on all
flows containing these assets. If the attacker is able to spoof the node handling
the read requests (e.g., by injecting false requests), (s)he could gain access to
the confidential list of patients.

6.5.3 JPmail
JPmail2 is an email client implementing a subset of the MIME protocol. It
leverages information-flow control to enforce a security policy. In essence,
to send an email the user specifies the email body and header. These are
reclassified so that email header is public and the email body is encrypted. As
such, the email is sent to the SMTP server, which delivers it to the POP3 server.
From there, the email recipient is able to retrieve it. The email header remains
public, while the email body is decrypted using a (recipient) private key. In this
scenario, the SMTP and POP3 servers are common targets of attack as they are
exposed to open networks. In our analysis, the global policy causes low labels on
the originating flows for non-confidential assets (e.g., recipient public key). Yet,
the email body and header are initially confidential, hence the corresponding
(origin) flows are labeled as high. At this point, the graph is visited and the

2http://siis.cse.psu.edu/jpmail/jpmaildetails.html

http://siis.cse.psu.edu/jpmail/jpmaildetails.html

6.5. EVALUATION 137

23. AMed:
C (H)

11. BID: C (H)

10. AID:
C (H)

14. AID: C (H)

3. BID:
C (H)

11/11/20 33

Alice Bob

STUN
TURN A

STUN
TURN B

Signaling
server

IDPX IDPY

X

Browser A Browser B

1. AID:
C (H)

2. AID:
C (H)

9. AID:
C (H)

13. BID:
C (H)

15. APort

16. APort

17. APort

18. BPort

19. BPort

20
. B

Port

21. AMed:
C (H)

26. BMed:
C (H)

24. BMed:
C (H)

25. EncrBMed

22. EncrAMed

5. Encr
SessionA

7. Encr
SessionB

6. EncrSessionA8. EncrSessionB

Y

4. BID:
C (H)

12. BID:
C (H)

Figure 6.8: A SecDFD for WebRTC after the analysis.

propagation functions propagate labels accordingly. No information can be
leaked to the attacker zone due to the modeled declassifications.

6.5.4 WebRTC
We extend our validation by applying our approach on a model of the WebRTC
project 3 which facilitates real-time communication capabilities for browsers
and mobile applications. In a nutshell, WebRTC provides the infrastructure
needed for developing applications that require sharing user media (voice, video,
files) between two or more parties. Figure 6.8 depicts the SecDFD for WebRTC
after the analysis. First, a peer-to-peer network communication is established
via a signaling server using the HTTPS protocol. Afterwards the client browsers
obtain each other’s Browser IDs. The browsers verify the identity of other
involved clients. Next, the calling browser establishes a secure connection via
STUN/TURN servers. A transport layer security solution is used to secure the
data transfers between the browsers. At each node, we assume the attacker
is able to observe the assets. The global policy causes flows 9, 12, 21, and
24 to be labeled as high. Upon visiting the graph, the security labels are
propagated as follows. First, the AliceBrowserID is generated and stored on
G-mail servers (flows 1-2). IDPX forwards the AliceBrowserID (confidential)
causing the propagation of a high label. An analogous propagation happens for
BobBroswerID. Nodes forwarding the encrypted session data (flows 5-8) via
HTTPS cause the propagation of low labels. A similar propagation happens
for flows 15-20. Encrypting AMedia in Browser A causes a low label on flow 22
(similar for flow 25). Decrypting EncrAMedia in Browser B causes a high label

3https://webrtc.org/

https://webrtc.org/

138 CHAPTER 6. PAPER E

on flow 23 (similar for flow 26). Our analysis identifies potential design flaws at
all nodes with high input/output flows. A second analysis of the WebRTC was
performed using a different tool as a sanity-check of our results. We compared
our results to the results obtained by an Eclipse plugin introduced by Sion et
al. [42]. The authors identify several threats as less critical. The locations of
those are in-line with our analysis results.

6.6 Discussion and limitations
A mismatch between intended architecture and implemented architecture is
a source of frustration in many organizations. It manifests itself in a loss of
resources for large code refactorings, loss of functionality, architectural de-
cay and technical debt. Further, assuring architectural compliance is a hard
problem [226]. In the following, we discuss challenges and opportunities of
our approach.

Secure model to code. SecDFDs provide a simple and intuitive model
for analyzing security policies at the design level. They can help a system
designer to uncover security flaws or prove that the design is secure. On the
other hand, the security guarantees provided by this approach hold under the
assumption that the code implementing the security contracts does not violate
the security labels. Such implementation can be verified in a second phase by
using existing code-level security analysis. For our case studies, we leverage
existing implementations in security-typed languages such as JIF [224].

A major advantage that comes with the two-phase security analysis is compo-
sitionality. By decoupling the security analysis into a global design-level analysis
and a local implementation-level analysis, we only need to check the security of
implementations locally, and obtain end-to-end security assurance for the entire
system. Compositionality is an important and desirable property for scaling
a security analysis to real-world systems. Further, it enables us to relate the
results of the verification analysis to semantic security conditions such as non-
interference [219], thus providing provable security guarantees. Intuitively, the
security condition requires that confidential information is released to attacker
zones only in a controlled manner. The design-level security analysis enforces
such invariant for a given security policy. Further, the code-level security
analysis ensures the implementation of a security contract entails the contract’s
security labels. Thus it follows that the system satisfies the security condition.

Secure code to model. Significant effort has been put into reverse engineering
the architecture from the implementation [227]. Further, existing work aims to
extract and analyze the security concepts in the implemented architecture [90].
Yet, existing tools for extracting the architectural design have scalability issues
and often do not provide formal guarantees. We see potential benefits in
leveraging our approach to lift the implementation to the design level and
analyze security on that level of abstraction. For instance, a call graph can be
extracted from code. By means of specifying the node types of the call graph
(or possibly annotating code methods with node types) and specifying a global
security policy, the SecDFD could be extracted from the code. Assuming a
correct extraction of the node types, the security analysis could be performed
on the implemented architectural design.

6.7. RELATED WORK 139

Limitations. The challenge of identifying the sources and sinks of informa-
tion, including attacker zones, is also applicable to our work. At the current
stage, our approach is best suitable for top-down architectural security design,
where arguably the designer is aware of sources and destinations of information
and their security requirements. Alternatively, we can leverage existing work
on automatic discovery of source and sinks, e.g., the SuSi tool for the Android
framework [79]. To our best knowledge, SecDFDs keep the desired simplicity
of the DFD notation. However, the usability aspect was not subject to our
validation. In the future we plan to conduct user studies to validate the diffi-
culty of performing a SecDFD threat analysis with practitioners. Finally, we
recognize potential subjectivity in reporting the evaluation results and remark
that a thorough validation is planned for future work.

6.7 Related work
This section discusses related work in automated security analysis, DFD se-
mantics, and information flow analysis.

Automating security analysis of diagrams. Almorsy et al. [44] propose an
approach for automating the security analysis by capturing vulnerabilities and
security metrics. It is beneficial to analyze system vulnerabilities and system
defenses side by side. Similarly to our approach, their model-based approach
requires input from the designer to discover vulnerabilities. However, Almorsy
et al. [44] do not capture information disclosure threats and security policies.
Further, the correctness of analysis results relies on the soundness of the
signatures, which are very generic. More importantly, the described signatures
for identifying the vulnerabilities are not supported by formal reasoning.

Berger et al. [45] propose an approach for semi-automated architectural risk
analysis. This approach leverages a subset of open source vulnerability reposi-
tories and a rule checker for pattern matching the system model represented
with EDFDs. The use of knowledge-bases has shown to be successful in finding
security threats in the past. Yet, it is challenging to interpret vulnerability
descriptions from open source repositories into graph query rules. Like us,
Berger et al. [45] extend the DFD with data source, target, channels, and
confidentiality objectives. In contrast, the SecDFD has more semantical flavor
and includes the ability to provide security specifications and attacker zones.

Sion et al. [42] present an approach for a risk-centric threat analysis of
DFDs, which enables threat elicitation and risk analysis. The ability to model
security solutions in the form of architectural patterns is useful for a more
comprehensive analysis. The approach relies on the security expert to provide
the initial distribution estimates for the Monte-Carlo simulation which may
result in low confidence and precision. Similarly, the authors enrich the DFD
with security solutions. Further, their tool uses the Viatra query engine and
a graph-based pattern language. In contrast, their approach is risk-centric
whereas this work aims to provide security semantics to DFDs.

Jürjens et al. [57] have proposed UMLSec, an extension for UML to model
security aspects in system design and prove security properties, such as secrecy.
UMLSec’s formal semantics scales well as it applies to a variety of model types,
e.g., activity diagrams or statecharts. Like SecDFD, UMLSec defines a system

140 CHAPTER 6. PAPER E

as a composition of subsystems and enables modeling a security policy and
attackers. In contrast, Jürjens et al. [57] focus the analysis on attacker behavior,
rather than the semantics of security labels on flows.

Guerriero et al. [228] propose a privacy-by-design approach for specifying
and enforcing privacy policies by code rewriting. Similarly to our work, the
authors propose a model and a specification language for policies over sensitive
data flows. In addition, the privacy policies are enforced algorithmically on an
application data flow model. They introduce privacy-aware operators which
enable policy enforcement. Further, their approach is focused on preventing
disclosure of sensitive data under certain contextual conditions (i.e., when
and how much data can be observed), rather than the way sensitive data is
transformed by the system (i.e., security contracts of operations).

Breaux et al. [229] develop a methodology for mapping privacy requirements
from natural language text to a formal language. Interestingly, the authors
define traces of requirements around particular data (similar to our end-to-end
view). However, Breaux et al. [229] focus on specifying policies and identifying
conflicts between policies of different actors.

Security semantics of DFDs. Several works approach DFDs from a formal
angle, by associating a formal semantics to the model. They aim at extending
DFDs with lightweight specifications for expressing functional correctness
properties. For instance, Leavens et al. [51] propose a DFD semantics that
allows to specify the dynamic behavior of a concurrent system, and Larsen et
al. [52] leverage formal specifications in the VDM language to formally reason
about DFDs. We refer to the work by Jilani et al. [84] for an overview. In
contrast, our work focuses on the security semantics of DFDs and it presents
a simple label model that enables security analysis at the design level. The
simplicity stems from the fact that our label model only focuses on security
and ignores the functional correctness of the system.

Information flow analysis at code level. Abdellatif et al. [230] present an
approach accompanied by a toolkit to automate information flow control in
component-based systems. Their approach requires developers to specify the
security properties with a configuration file, which in turn is used to validate the
system for potential data leaks, before the security code is generated. Similarly
to our work, the authors identify security leaks by automatically checking
the security policy at the level of components. Yet, our work is unique with
respect to label propagation and label specification for system components. In
addition, our work defines attacker zones as part of a global security policy,
while Abdellatif et al. [230] do not model the attacker explicitly.

Information flow control is a well-studied research area. A large array of
security conditions and enforcement mechanisms have been proposed to address
different computational models, languages and systems [77, 218, 219]. Our
contribution is orthogonal to these works and it can leverage their results as
discussed in Section 6.6.

6.8 Conclusion
In this paper we have presented a formal approach to analyze security objectives
of information flows at the design level. The approach focuses the analysis of

6.8. CONCLUSION 141

confidentiality and integrity objectives. We provide a formal definition of a
security specification language for DFDs. In addition, we introduce the Security
Data Flow Diagram (SecDFD) and provide semantics of SecDFD security labels.
We prove security for the SecDFD with respect to a global security policy and
a security label environment. We have implemented our approach using the
Viatra framework and packaged it as a publicly available plugin for Eclipse.
The approach is evaluated on four open source applications. The underlying
compositionality of our approach provides opportunity to refine the analysis
from a global design level to a local implementation level analysis. In the
future we plan to implement mechanisms to refine the analysis on the level
of implementation by combining existing information flow analysis techniques
such as static, dynamic and hybrid analysis. Further, we plan to extend
the node semantics, covering additional node types, such as authentication,
authorization, and verification. Finally, we plan further validation efforts with
respect to the usability aspects and the analysis of larger open source projects
with (and without) known design flaws.

142 CHAPTER 6. PAPER E

Chapter 7

Paper F

This chapter is based on
Inspection Guidelines to Identify Security Design Flaws,

written by
K. Tuma, D. Hosseini, K. Malamas, and R. Scandariato,

published in
Proceedings of the International Workshop on Designing and

Measuring CyberSecurity in Software Architecture (DeMeSSA),
2019.

143

Abstract
Recent trends in the software development practices (Agile, DevOps, CI) have
shortened the development life-cycle causing the need for efficient security-
by-design approaches. In this context, software architectures are analyzed
for potential vulnerabilities and design flaws. Yet, design flaws are often
documented with natural language and require a manual analysis, which is
inefficient. Besides low-level vulnerability databases (e.g., CWE, CAPEC) there
is little systematized knowledge on security design flaws. The purpose of this
work is to present and evaluate a catalog of security design flaws accompanied
by inspection guidelines for their detection. To this aim, we conduct empirical
studies with master and doctoral students. This paper presents a catalog of
19 inspection guidelines for detecting security design flaws and contributes
with an empirical evaluation of the inspection guidelines. We also account
for the shortcomings of the inspection guidelines and make suggestions for
their improvement with respect to the generalization of guidelines, catalog
re-organization, and format of documentation. We record similar precision,
recall, and productivity in both empirical studies.

144 CHAPTER 7. PAPER F

7.1 Introduction
Recent trends in software development, such as, Agile, DevOps, and Continuous
Integration (CI), have shortened the software development life-cycle, impacting
software security [231,232]. For instance, CI tightened release cycles to days,
or sometimes hours. This limits the activities that can take place for security
analysis, causing the need for efficient security-by-design approaches. In the
design phase of the development life-cycle, software architectures are often
analyzed for potential design flaws and vulnerabilities. Knowledge reuse is
an important factor that can help raise the efficiency. For instance, previous
work ([44, 45, 233], to cite a few) has made use of publicly available records
of low-level security vulnerabilities, such as CAPEC ,1 CVE ,2 CWE 3 to
semi-automate the security analysis of systems. On the level of software
architecture, Garcia et al. [234] introduce a catalog of architectural bad smells
specified with UML diagrams. Similarly, Bouhours et al. [235] contribute with
a catalog of 23 so called “spoiled patterns” or, architectural design antipatterns.
Yet, the existing literature about architectural design flaws [234–238] lacks
a systematized knowledge about security-relevant architectural design flaws.
In addition, there is a lack of practical inspection guidelines for identifying
security design flaws in software architectures.

This paper presents a catalog of 19 inspection guidelines for detecting
security design flaws. As a key contribution, we have conducted some empirical
experiments to assess precision, recall, and productivity when the guidelines
are used. The experiments also provided the opportunity to track the prob-
lematic guidelines and suggest improvements to the catalog with respect to:
(a) generalizing the guidelines, b) re-organizing the catalog, and c) format of
documentation. This is another key contribution of this paper.

We observe three metrics for evaluating the inspection guidelines, namely,
precision (TP/(TP + FP)), productivity (TP/hour), and recall (TP/(TP +
FN)). We record a relatively high precision (92.6%) and productivity (11.5 TP/h).
On the other hand, our results show that about half of the security design flaws
go unnoticed (average recall is 50.4%). Similar measurements of precision and
recall have been reported in related empirical studies investigating knowledge-
based manual threat analysis techniques, i.e. STRIDE [10, 210]. During our
experiments we have found that many participants have expressed doubts when
detecting certain security design flaws. We systematically track which guidelines
were problematic and provide an account for the re-occurring issues. Accord-
ingly, we suggest simple improvements to overcome these issues. The detection
guidelines can be currently used to manually analyze software design. However,
we see potential in using these guidelines to automate the detection of security
design flaws. Specifically, the closed questions are already operationalized to
some extent, and can be easily transformed into graph queries.

The rest of the paper is organized as follows. Section 7.2 describes the
guidelines for detecting security design flaws and shows how they are used.
Section 7.3 describes the experimental design and execution. Section 7.4
presents the results and Section 7.5 suggests improvements for the guidelines.

1https://capec.mitre.org
2https://www.cvedetails.com
3https://cwe.mitre.org

https://capec.mitre.org
https://www.cvedetails.com
https://cwe.mitre.org

7.2. EVALUATED SECURITY DESIGN FLAWS 145

Table 7.1: A list of the security design flaws evaluated in this paper.

Name Description

Missing authentication An absence of an auth. mechanism in the system.
Authentication bypass The auth. mechanism does not cover all possible entry points

to the system.
Relying on single factor auth. The auth. mechanisms rely on the use of passwords.
Insuff. session management Sessions are not managed securely throughout their life-cycle.
Downgrade authentication Possibility to authenticate with a weaker (or obsolete) auth

mechanism.
Insuff. crypto key management Keys are not managed securely throughout their life-cycle.
Missing authorization An absence of an authorization mechanism in the system.
Missing access control An absence of access control in the system.
No Re-authentication An absence of re-authentication during critical operations.
Unmonitored execution Uncontrolled resource consumption due to interactions with

external entities.
No context when authorizing An absence of conditional checks for access control.
Not revoking authorization An absence of a process for revoking user access.
Insecure data storage Storage of sensitive data is in clear or weak access control

mechanisms are in place.
Insuff. credentials management Credentials are not managed securely throughout their life-

cycle.
Insecure data exposure Sensitive data is transported in clear text.
Use of custom/weak encryption Generating small keys, using obsolete encryption schemes.
Not validating input/data Absence of validation checks when receiving data from exter-

nal entities.
Insuff. auditing Access to critical resources or operations is not logged.
Uncontrolled resource consumption Uncontrolled resource consumption of internal components.

Section 7.7 lists the threats to validity, while Section 7.6 discusses the related
work. We conclude the paper in Section 7.8.

7.2 Evaluated Security Design Flaws
This section gives a short description of the security design flaws catalog used
in the empirical experiments. A more detailed description if the security design
flaws listed in Table 7.1 is provided in [239]. We remark that the catalog is
optimised and improved as a result of the empirical evaluation, as discussed
in Section 7.5.

The catalog is a list of 19 design flaws related to issues with authentication,
access control, authorization, availability of resources, integrity and confiden-
tiality of data. The catalog entries consist of (a) the name of the design flaw,
(b) a description (using natural language), and (c) a series of closed questions
that serve as detection guidelines. Listing 7.1 shows the first catalog entry. The
catalog was compiled by systematically filtering vulnerability database entries
(CVE, CWE, OWASP,4 and SANS5) and existing threat and vulnerability
taxonomies. The final catalog entries were obtained by grouping a filtered
subset of database entries and taxonomies. The authors grouped the entries
whenever the vulnerabilities could be caused by the same design-level issues.
For instance, they relate 3 CWE entries (287, 306, and 862) to the security
design flaw “Missing authentication” (Listing 7.1). The CWE entry 287 is a
description of an improper authentication, where the software is not able to
prove the identify of the actors in the system. Entry 306 is a description of

4https://www.owasp.org/index.php/Category:OWASP Top Ten Project
5https://www.sans.org/top25-software-errors/

https://www.owasp.org/index.php/Category:OWASP_Top_Ten_Project
https://www.sans.org/top25-software-errors/

146 CHAPTER 7. PAPER F

Design Flaw 1: Missing authentication
Description This refers to the absence of an authentication mechanism in the system.

Apart from external entities, like users or other systems the system may interact
with, authentication may be necessary within the system between processes/com-
ponents/datastores that are located in different trust boundaries.

Detection
(i) Consider the external entities (users/subsystems) that interact with the

system and which assets of the system they can access.
(ii) Determine the processes that interact with high-value assets in the system.

(iii) For each interaction examine:
(1) If it is an entity: Does the entity go through an authentication point

in order to access the asset?
(2) If it is a process: Is the identity of a process accessing datastores or

processes in a different part of the system (trust boundaries – requires
different privilege levels) verified?

Listing 7.1: Textual description of the missing authentication design flaw.

commonly missing (re)authentication mechanisms when critical functions are
executed. Finally the entry 862 is describing the weakness of missing autho-
rization mechanisms system actors communicating with the system. All the
above entries are describing weaknesses related to external entities or critical
processes communicating with the system without an authentication mecha-
nism in place. Therefore, the design issue causing all three entries is missing
authentication. Notice that some inspection guidelines are overlapping (e.g.,
“Missing authentication” and “No Re-authentication” from Table 7.1), therefore
the catalog is improved as discussed in Section 7.5. A detailed procedure of
the catalog compilation can be found in the original study [239].

7.3 Empirical Experiments
Research questions. We conducted two controlled experiments with participants
to investigate the performance of using existing guidelines for detecting security
design flaws in a software architecture. The first experiment was conducted by
the second and third author with master students. The second experiment was
conducted by the first author with doctoral students. We were interested to
measure the efficiency and effectiveness of the guidelines in both experiments.
We observe effectiveness of the guidelines with a measure of precision and
recall, and efficiency with a measure of productivity. This study focuses on the
following research questions.
RQ1. What is the precision, recall, and productivity of the proposed guidelines
for security design flaw detection?
RQ2. What are the shortcomings and benefits of the proposed guidelines for
security design flaw detection?
Experimental object. Figure 7.1 shows the context DFD of the experimental
object. The Home Monitoring System (HomeSys) is a system for remotely
monitoring private residents. Its purpose is to provide the infrastructure and
functionalities for customers to automatically receive and manage notifications
about critical events in their homes. In principle, the system consists of a

7.3. EMPIRICAL EXPERIMENTS 147

Figure 7.1: A high-level DFD of the experimental object.

gateway communicating with sensors, and a cloud system collecting data from
gateways and displaying it on customer dashboards. Sensors are analog or
digital hardware devices that produce measurements and send them to the
gateway. Actuators are hardware devices that can receive commands from the
gateway, like for instance, taking a picture, activating a buzzer or flicking a
switch. The gateway is a hardware device which relays measurements to the
cloud (via a 3G or WiFi network) and manages the actuators in the residency.
The cloud is a software system which communicates with the gateways and
provides services for the customers.
The system documentation (about 30 pages) includes (1) the description of the
problem domain with scenarios, (2) the requirements of the system including
non-functional requirements and (3) a hierarchically decomposed architecture
specified with UML (e.g, deployment diagram). The complete description of
the system has been used in previous studies [210] and is open to the public.
The participants were tasked to read the preparatory material (including the
system documentation) before the experiment took place. Email reminders
were sent out before-hand. The documentation of the system does not include
security requirements, as the purpose of this exercise is to derive those from
the detected design flaws.

Participants. The participants of this study are three master-level students
and three doctoral candidates in computer science and engineering disciplines.
We excluded one report handed in by a master student as the task was not
taken seriously. All the participants had experience with modeling, basic
security concepts, and UML notations used in the system documentation. The
participants in the second experiment were doctoral candidates in software
engineering with a master degree in computer science and engineering. They
have worked with modeling before, and were familiar with basic security
concepts and the notations used for describing the experimental object. We
have made sure that the participants were able to complete the task before
starting the experiment. The participants performed the task individually.

Task. In essence, the participants were tasked to go through each entry
in the catalog, use the guidelines to detect flaws in the HomeSys design, and
document the identified flaws. The guidelines prescribe detecting a subset of
elements in the architecture for inspection, therefore the participants had to also
indicate the location of the identified flaw. For each architectural element under
inspection, the guidelines provide a list of closed questions. A negative answer
indicates the existence of a design flaw for that element. In case of insufficient

148 CHAPTER 7. PAPER F

information in the documentation, the participants were instructed to report a
design flaw, anyway. If they thought a particular entry was not applicable in
the system under examination due to some restrictions or regulations in the
domain, they were instructed to mark that entry as not applicable. Finally,
the participants handed in all the printed documents, including the filled-in
form documenting the detected flaws.

Execution. Before the execution of the first experiment, four participants
were selected due to having successfully completed a master level course on
advanced software architecture. Therefore, they were familiar with basic con-
cepts of software architecture design, and have studied analyzing architectures
for security in the context of this course. On the day of the first experiment,
the participants were gathered in a classroom. They were given printed copies
of (i) a one-page task description (ii) the HomeSys documentation, (iii) the
catalog of security design flaws as described in Section 7.2, and (iv) a form for
documenting the identified flaws. Regular breaks were allowed during which
the experimenters made sure the participants did not compare solutions.
Before the execution of the second experiment, preparatory reading was handed
out via electronic mail (2 weeks in advance). The preparatory reading included
the same documents used in the first experiment. Regular email reminders
were sent until the last day before the execution. On the day of the experiment,
the participants met the experimenter for an individual session on faculty
premises. They was given printed copies of all the documents (i-iv). The first
author explained their task again and briefly described the printed documents.
Only procedural questions were answered during the experiment. Due to the
complexity of the task, no strict time limit was enforced, short breaks were
permitted, and accounted for.

Measures. We adopt the same ground truth and measures of precision,
recall, and productivity in both experiments. The ground truth was re-assessed
after the first experiment to ensure its correctness. It consists of 47 security
design flaws. Conventionally, precision (TP/(TP +FP)) is measured as a ratio
between the true positives (i.e., correctly identified flaws) and all identified flaws
(including the false flaws). A true positive (TP) is a correctly identified security
design flaw. This entails that the documented flaw exists also in the ground
truth and is identified at the same location of the architecture. A false positive
(FP) is an incorrectly identified and documented flaw that does not exist in
the ground truth. Recall (TP/(TP + FN)) is measured as a ratio between the
true positives and all correctly identified flaws (including the overlooked flaws).
A false negative (FN) is a design flaw that exists in the ground truth but
has not been documented. Productivity (TP/h) is measured as the amount
of correctly identified flaws per hour. We measured the time it took for the
participants to complete the task and subtract the time that was lost during
the breaks. Participants sometimes noted that a flaw was not applicable. All
participants marked the correct flaws as not applicable, therefore we do not
assess flaws that were not applicable as TP, FP, or FN .

We include an additional measure for keeping track of the guidelines the
participants struggled with. We flag the TP , FP , FN whenever the participant
expressed that there was insufficient information (II) to determine the existence
of a flaw. If a correctly identified flaw (TP) is flagged with II this means that
the participant has identified the correct flaw in the correct location in the

7.4. RESULTS 149

Table 7.2: Results from both experiments (accumulated results are in bold).

Design Flaws Measure

Participant ID TP FP FN P [%] R [%] Prod [T P/h]

M
Sc

1 23 2 24 92 48.9 9.5
2 26 3 21 89.7 55.3 9.4
3 19 4 28 82.6 40.4 6

Avg 22.7 3 24.3 88.1 48.2 8.3

P
hD

4 24 1 23 96 51.1 8.2
5 20 1 27 95.2 42.6 8.5
6 30 0 17 100 63.8 17.7

Avg 24.7 0.7 22.3 97.1 52.5 14.8

Total Avg 23.7 1.8 23.3 92.6 50.4 11.5

architecture, has documented this in the hand-in, but has also expressed doubt
due to missing information in the documentation. If an overlooked flaw (FN)
is flagged with II this means that the participant failed to identify the correct
flaw but also expressed doubt due to missing information.

7.4 Results
Table 7.2 summarizes the results of both experiments. First, we have calculated
the average precision, recall, and productivity for both experiments separately.
On average, participants 4-6 from Table 7.2 performed slightly better com-
pared to participants 1-3 (avg 97.1% precision vs. 88.1%, avg 52.5% recall
vs. 48.2%, 14.8 TP/h productivity vs. 8.3 TP/h). Yet, these differences are
small and not significant. The performance differences between experiments
can be explained by the different level of education. Henceforth we refer to the
accumulated TP , FP , FN , measures of precision, recall, and productivity of
the inspection guidelines.

Precision, recall, and productivity. On average, the participants identified
about half (23.7/47) of the security design flaws correctly. Yet, on average only
about 2 reported security design flaws were incorrect (FP). Therefore, the
average precision is quite high (92.6 %). The low number of FPs may indicate
that the inspection guidelines were not misleading the participants towards a
false design flaw discovery. On the other hand, about half of the flaws were
overlooked. On average, the recall is measured at 50.4 %. This result is not
surprising. Similar measurement of precision and recall have been reported in
related empirical studies investigating manual knowledge-based threat analysis
techniques, i.e., STRIDE [10,210]. In general, high precision and low recall may
be a common trait for techniques that manually analyze software architectures.
The average productivity of the approach is 11.5 correct threats per hour.
This result is more surprising, as the related literature reports a much lower
number of correctly identified threats per hour (1.8 TP/h in [10] and about
4 TP/h in [210]). This can be explained by the different goals of threat analysis
techniques vs detection of design flaws. Threat analysis techniques help to
systematically identify security threats on the level of software architecture. The
security threats are considered correct only when a realistic attack scenario is
found. Finding a realistic scenario requires thinking about possible attack paths

150 CHAPTER 7. PAPER F

Table 7.3: Flaws flagged with insufficient information (II) (problematic flaws
are in bold).

Flaw ID TP (Participant ID) FN (Participant ID) Σ

2 4 (6) 0 4
3 1 (6) 0 1
4 7 (1,2,3,6) 3 (3,5) 10
7 0 4 (5) 4
9 8 (1,2) 0 8
12 3 (1,2) 11 (1,2,5,6) 14
13 2 (6) 2 (6) 4
14 2 (5,6) 0 2
15 1 (6) 15 (1,2,5,6) 16
17 2 (5) 2 (6) 4
18 0 2 (3,4) 2
19 2 (6) 0 2

Total 32 39 71

and how to break into the system. This may be cognitively more demanding
than answering a set of closed questions about the architectural design.

Insufficient Information. In the second experiment, we measure which
guidelines posed problems to our participants. Particularly, we flag correctly
identified and overlooked flaws with Insufficient Information (II). To this aim,
we have re-assessed the data collected in both experiments. A FN was flagged
when the participant reported the flaw, but never specified the location due to
missing information. A FN was also flagged when the participant did not report
the flaw, but made notes about missing information next to the check-list in the
catalog. Incorrectly identified flaws (FP) were never flagged. The participants
never expressed doubt about missing information when making a mistake.

Table 7.3 shows the flagged TP , FP , which flaw they relate to, and
how many participants expressed the same doubts. We have recorded that
25.2% (71/282) of all reported TP and FN from Table 7.2 (ΣTP+ΣFN = 282)
were flagged with II. Visibly, security design flaws 4, 12, 15, and 18 seem to be
problematic. These design flaws were often subject to missing information, for
more than one participant. This may indicate that some guidelines assume the
availability of detailed information about the system (information that is rarely
available in the design phase). In addition, we have gathered participants
feedback in the exit questionnaire. We asked the participants about what
they did not like about the approach. Some participants referred to missing
information. For instance:

“I felt that the approach and the architecture were too detached, and that I
needed much more information that what was provided in the architec-
ture to complete the analysis properly.”

This confirms that the participants indeed had problems with some of the
guidelines. In particular we have identified three kind of problems, and suggest
improvements in what follows.

7.5 Improving the inspection guidelines
In what follows we describe the problems we encountered with the proposed
guidelines, and provide suggestions for improvement. Guidelines generalization.

7.5. IMPROVING THE INSPECTION GUIDELINES 151

Design Flaw 4: Insufficient Session Management
Description Not managing a session properly throughout its life-cycle can leave the

system vulnerable to session hijacking attacks. Session management involves
creation (the session should be established through a secure channel and session
identifier should be encrypted), the time frame the session is active (an attacker
might attempt to reuse the session ID to gain access) and its destruction/invali-
dation (proper session invalidation should take place when the user logs out or
session timeout. Not terminating sessions can also lead to resource depletion).

Detection
(i) Determine which sessions are established in the system and between which

endpoints.
(ii) For each session examine:

(1) Is the session established through a secure channel?
(2) Is the session ID encrypted when in transit?
(3) Is the session ID hard to guess?
(4) Is the use of session ID as a parameter in URLs prevented?
(5) Is the session ID validated on server side?
(6) Are secure cookies used?
(7) Is the session ID tied to other user properties like IP, SSL session ID?
(8) Can the same session be accessed simultaneously from two endpoints?

Should it?
(9) Is session timeout set? Is it the minimum possible value?

(10) Is the session invalidated on logout?
(11) Is the session ID renewed in the event of privilege change?
(12) Is there a mechanism to monitor the creation/destruction and attempts

to connect to a session?
(13) Is the user required to re-authenticate after a period of inactivity?

Listing 7.2: Textual description of the insufficient session management design
flaw.

We analyze the problematic guidelines related to design flaws 4 and 15. Both
guidelines are not general enough to be useful for a design-level analysis.
We have observed this trend in other guidelines as well (namely, 12, 18).

Listing 7.2 shows the guidelines related to security design flaw 4. Overall,
participants still managed to correctly identify this flaw despite having doubts
due to missing information (c.f., Table 7.3). They were able to do so as some
question posed for detection are in fact very useful (e.g., Is the user required to
re-authenticate after a period of time?) and can be answered at design time.
One possible explanation for our participants expressing doubts is that there
were too many technical questions posed for detection. For instance, Is the
session ID tied to other properties like IP, SSL,? The properties of the session
IDs are technology-dependent. The choice of technology is decided in later
stages of the development life-cycle [149].

Listing 7.3 shows the guidelines related to security design flaw 15. Compared
to the previous flaw, these guidelines are much shorter. All three questions
posed for flaw detection are very technical. For instance, Is the reuse of packets
prevented (Replay attacks)? The participants did not know what replay attacks
are, or how to counter them. This may have caused the participants to simply
ignore this flaw without even finding the possible locations, and making a note

152 CHAPTER 7. PAPER F

Design Flaw 15: Insecure Data Exposure
Description Data is not transferred in a secure way. For example a web application uses

the HTTP instead of HTTPS. This leaves the channel vulnerable to eavesdropping,
Man In The Middle (MITM) attacks etc.

Detection
(i) Locate the valuable information in the model.

(ii) Track them through the architecture to determine where and how they are
transferred.

(iii) At each step examine the following:
(1) Is the reuse of packets prevented (Replay attacks)?
(2) Is there any form of timestamping, message sequencing or checksum

in the exchanged packages?
(3) Is the traffic over an encrypted channel (SSL/TLS)?

Listing 7.3: Textual description of the insecure data exposure design flaw.

Design Flaw 4.1: Insufficient Session Management
Description Not managing a session properly throughout its life-cycle can leave the

system vulnerable to session hijacking attacks. Session management involves the
creation, the time frame the session is active, and its destruction. The attacker
may attempt to disrupt or manipulate these processes for her gain.

Detection
(i) Determine which sessions are established in the system and between which

endpoints.
(ii) For each session examine:

(1) Is the session established through a secure channel?
(2) Is the session ID hard to guess?
(3) Is the session ID protected when in transit (e.g., encrypted)?
(4) Is there a process for validating the session ID on server side?
(5) Is the session destructed (or invalidated) on logout?
(6) Is the session ID renewed in the event of privilege change?
(7) Is the user required to re-authenticate after a period of inactivity?

Listing 7.4: Textual description of the improved insufficient session management
design flaw.

about missing information (resulting in a flagged FN).
Listing 7.4 introduces a few simple improvements. First, the description of

the design flaw is shortened and redundant questions removed. For example,
session timeout directly relates to the last posed question Is the user required
to re-authenticate after a period of inactivity? Second, the questions posed
for detection that were too specific were removed. For instance, the usage of
secure cooking is technology-dependent.

This kind of improvement could help to relate the guidelines to a design-
level description, making them easier to apply. In the exit questionnaire we
also ask the participants for their suggestions for improvement. Generally, the
participants suggested similar improvements. One participant even suggested to
have several versions of the same guideline but on different level of abstraction:

“Maybe divide the 19 points [Security Design Flaws] into classes based on

7.5. IMPROVING THE INSPECTION GUIDELINES 153

Table 7.4: Suggestion for re-organization of the proposed guidelines.

Old New

ID Name ID Name

1 Missing authentication 1 Missing authentication
2 Authentication bypass

3 Relying on single factor auth 2 Weak authentication
5 Downgrade authentication
9 No Re-authentication
14 Insuff. credentials management

6 Insuff. crypto key management 3 Missing/weak encryption
16 Use of custom/weak encryption

7 Missing authorization 4 Missing authorization
8 Missing access control

11 No context when authorizing 5 Weak authorization
12 Not revoking authorization

13 Insecure data storage 6 Leaking important data
15 Insecure data exposure

10 Unmonitored execution 7 Uncontrolled resources
19 Uncontrolled resource consumption

17 Not validating input/data -
18 Insufficient auditing 8 Insufficient auditing
4 Insufficient session management 9 Insufficient session management

what level of design is provided.”
Overlapping guidelines. Most participants agreed that the approach takes

too much time. We found that many guidelines are overlapping and could
be compressed and re-organized. In addition, as per comparing guidelines in
Listing 7.2 and Listing 7.3, the guidelines are not well balanced in length and
complexity. For instance, the guidelines in Listing 7.3 try to help detecting
where data can be leaked in transit. Yet, the proposed catalog contains another
set of guidelines to detect the design flaw for insecure data storage (Flaw 13).
Detecting both flaws requires to first identify valuable information and track it
through the architecture. Therefore, merging them and removing redundant
questions would help speed up the manual detection. The exit questionnaire
revealed that the participants generally agree with this notion. For instance,
two participants criticized the categorization of guidelines:

“Maybe I would not categorize them [Security Design Flaws 1-19] so much.
Having 5-10 [questions] under the same category does not always repre-
sents the category.”
“Try to group the items of the list (e.g., there are many references to
encryption scattered through all the guidelines).”

Table 7.4 suggests a reorganization of the proposed guidelines. Implementing
such a restructuring (incl. the removal of redundant guidelines) could result in
half the original size of the catalog (9 vs 19). A closer look into the guidelines
showed that many security design flaws were very similar. For instance, the
guidelines for detecting missing authorization and missing access control were
asking the user for the same kind of information twice. We also suggest to
gather all encryption-related guidelines and group them into one comprehensive

154 CHAPTER 7. PAPER F

guideline (Missing/weak encryption). We suggest the removal of one secu-
rity design flaw altogether, namely Not validating input/data as missing field
validation is a bad programming practice, rather than a design flaw.

Tedious documentation. Finally, in the exit-questionnaire, participants have
expressed a dislike for navigating through documents and documenting the
flaws. For instance, when asked if the approach takes too much time, one
participant responded:

“Yes, since you have to go through all the different documents.”
Another participant responded:

“Yes, some of the questions covered many parts of the system which lead to
a journey on finding information.”

The participants had to answer not only the closed questions next to the
guidelines, but also fill-in a form with a list of identified flaws and their
description. This resulted in a waste of time and could have only decreased
the level of concentration.

First, for future studies, we suggest to minimize the amount of different
documents handed out to participants. Second, we suggest minor changes in
the format of the guidelines. Along-side each closed question, there should be
(i) an obligatory field to specify the location in the architecture, (ii) optional
filed for marking a flaw as not applicable, (iii) optional field for notes. Finally,
we suggest to remove the additional form with hand-written descriptions of
identified design flaws. Having these changes in place would mean the users
only work with two documents: one describing the architecture, and one with
the guidelines and identified flaws. Automation and tool support would also
help reduce this problem.

7.6 Related Work
This section positions the paper in the context of existing literature on catalogs
of design flaws, vulnerabilities, architectural bad smells, anti-patterns, and
knowledge-based threat analysis techniques.

Catalogs of security design flaws. Da Silva and Cecilia [240] have compiled a
catalog of common architectural weaknesses (Common Architectural Weakness
Enumeration, CAWE). The authors identify and categorize common types of
vulnerabilities rooted in software architecture design and provide mitigations
to address such vulnerabilities. Da Silva and Cecilia [240] also analyze the
vulnerabilities of four real systems to discover their cause and find that up
to 35% vulnerabilities were rooted in the architectural design. Similar to
our work, the authors investigate which security patterns are likely to have
associated vulnerabilities. However, the proposed catalog is not evaluated with
an empirical study. As a result of initiatives launched by IEEE Computer
Society, Arce et al. [241] compiled a list of top 10 security design flaws and
discuss how to avoid them. The practical examples that showcase the flaws are
very useful for understanding the impacts of each flaw. Some catalog entires
by Hosseini and Malamas [239] are aligned to top 10 security design flaws.
For instance, Flaw 6 (insufficient cryptographic keys management) in [239]
relates to the “use cryptography correctly” flaw. Yet, the purpose of the top 10
security design flaws was to raise awareness among software architects about

7.6. RELATED WORK 155

the most common issues that have been the leading cause for security breaches
in practice. The purpose of this paper was to re-evaluate detection guidelines
and provide improvement suggestions for automating the detection.

Vulnerability databases. Common Vulnerabilities and Exposures (CVE)
(launched in 1999) is the largest and most updated vulnerability database.
Maintained by the MITRE corporation, it provides a publicly available list
of most common security vulnerabilities with unique identifiers. Common
Weakness enumeration (CWE) is a community-developed list of common soft-
ware security weaknesses. CWE aids developers and security practitioners
since it serves as a common language for describing security weaknesses in
architecture and implementation. It also provides different mitigation and
prevention techniques that could be used to eliminate weaknesses.

Architectural bad smells and anti-patterns. The literature on architectural
bad smells [234, 236] and anti-patterns [235, 237, 238] collides with our work
for what concerns the ambition to find and remove architectural issues that
negatively impact system life-cycle properties (extensibility, maintainability,
testability, etc.). In contrast, our work investigates security design flaws, that
is architectural design decisions that negatively impact the system security. Mo
et al. [237] have recently developed an automated detection of 6 architectural
anti-patterns and study their impact on error and change-proneness of the
related files. The authors analyze 100 industrial software projects with respect
to the project structural information and revision history. They find that there
are only a few distinct types of anti-patterns that occur in all the projects, where
Unstable Interface and Crossing were by far the largest culprits of error and
change-proneness. In contrast to our paper, the authors detect the anti-patterns
based on existing implementation. Our work is focused on detecting security
design flaws at the level of architectural models. Bouhours et al. [235] introduce
a catalog of ‘spoiled patterns’ and use it to automatically detect their manifes-
tation in software architecture models. They develop a plug-in for the Neptune
environment (UML, XML) which supports the instantiation of spoiled patterns
and suggest model transformations for re-factoring the design models. Nafees
et al. [238] propose a new template for detecting architectural anti-patterns
and a catalog of 12 Vulnerability Anti-Patterns (VAP) entries. The authors
also provide some examples of the proposed VAP entries. Yet, the catalog has
not yet been evaluated empirically. Taibi and Lenarduzzi [236] have conducted
interviews with 72 developers to collect a catalog of 11 microservice-specific
bad smells. Besides the 11 smells, the authors put forward the importance
of carefully analyzing the connections between microservices, especially the
connections leading to private data and shared libraries. Similar to this work,
the purpose of compiling such a catalog is to help practitioners in the detection
of bad architectural decisions. Garcia et al. [234] describe 4 architectural bad
smells identified through an in-depth analysis of two industrial systems. The
architectural smells are described in detail and are accompanied with UML
component diagrams, and a discussion of their impact on quality.

Knowledge-based Architectural Threat Analysis. Architectural threat analy-
sis consists of techniques and methods that are used for systematically analyzing
the attacker’s profile vis-a-vis assets of value to organizations. Such techniques
are often performed on models representing the software architecture of a
system. The purpose of analyzing security threats at this stage is to ultimately

156 CHAPTER 7. PAPER F

identify security holes and plan for necessary security solutions. Therefore, we
consider existing literature that makes use of knowledge base (threat catalogs,
vulnerability data bases, etc.) [9, 11, 44, 45, 124] to perform such analysis as re-
lated work. We refer the interested reader to a systematic literature review [208]
for a more detailed list of knowledge-based threat analysis techniques.

7.7 Threats to Validity
With respect to internal validity threats, we consider the threat of using graduate
and doctoral students as participants. Using students during empirical studies
has been criticized in the past, as their background knowledge is not that of
industrial practitioners. However, studies have shown [187,189] that the differ-
ences between the performance of professionals and graduate students are often
limited. To counter this threat we have made sure that the selected participants
had sufficient background education to complete the tasks. We also consider
the threat of an unrepresentative sample size (in total six participants). In
addition, the suggestions for improvement have not been empirically evaluated.

With respect to external threats to validity, we consider the threat to
generalizability of results. This study is conducted only on one experimental
subject, thus the results can not be generalized to other domains. To counter
this threat, we plan to conduct more studies, including security experts, and
different experimental subjects.

7.8 Conclusion
This paper proposes a catalog of security design flaws accompanied by inspection
guidelines for their detection. To evaluate our approach, we present two
empirical studies with master students and doctoral candidates. We conduct two
experiments investigating the performance of manually applying the inspection
guidelines in the context of analyzing a home monitoring system. We also
account for the shortcomings of the inspection guidelines and make suggestions
for their improvement with respect to the generalization of guidelines, catalog
re-organization, and format of documentation. Our results show a relatively
high precision (92.6) and productivity (11.5 TP/h). On the other hand, we
found that about half of the security design flaws go unnoticed (average recall
is 50.4%). We introduce an additional measure to investigate which guidelines
posed problems to our participants. We identify three type of problems the
participants encountered. First, some guidelines were not general enough to be
useful for detecting security design flaws. Second, several closed questions used
for detection were overlapping, potentially resulting in loss of time. Lastly,
participants have expressed a dislike for the format of documenting the flaws.
We suggest simple improvements of the guidelines to support future automation.

Chapter 8

Paper G

This chapter is based on
Automating the Early Detection of Security Design

Flaws,

written by
K. Tuma, L. Sion, R. Scandariato, and K. Yskout,

published in
Proceedings of the International Conference on Model Driven

Engineering Languages and Systems (MODELS), 2020.

157

Abstract
Security by design is a key principle for realizing secure software systems and it
is advised to hunt for security flaws from the very early stages of development.
At design-time, security analysis is often performed manually by means of
either threat modeling or expert-based design inspections. However, when
leveraging the wide range of established knowledge bases on security design
flaws (e.g., CWE, CAWE), these manual assessments become too time consum-
ing, error-prone, and infeasible in the context of contemporary development
practices with frequent iterations. This paper focuses on design inspection and
explores the potential for automating the application of inspection rules to
speed up the security analysis.

The contributions of this paper are: (i) the creation of a publicly available
data set consisting of 26 design models annotated with security flaws, (ii) an
automated approach for following inspection guidelines using model query
patterns, and (iii) an empirical comparison of the results from this automated
approach with those from manual inspection. Even though our results show that
a complete automation of the security design flaw detection is hard to achieve,
we find that some flaws (e.g., insecure data exposure) are more amenable to au-
tomation. Compared to manual analysis techniques, our results are encouraging
and suggest that the automated technique could guide security analysts towards
a more complete inspection of the software design, especially for large models.

158 CHAPTER 8. PAPER G

8.1 Introduction
In the current software development culture, agility and speed are paramount.
However, software quality in general, and security in particular, cannot be
sacrificed in lieu of a faster pace of development. This is where the “shift left”
concept comes into place. Namely, software validation and verification should be
applied as early as possible in each agile iteration, including the analysis of the
design. Indeed, recent work has highlighted that a large share of vulnerabilities
disclosed in industrial control systems had their root cause in the design [242].

At design level, mainstream analysis and validation techniques, like threat
analysis and design inspections [9, 11, 127], are heavily based on the use of
experts performing manual tasks. Therefore, they do not fit well in the agile
paradigm of continuous integration and continuous development [33]. More
automation of design-level security techniques is necessary, and the research
community has responded to this challenge [43–45,92]. This paper continues
on this research path and explores the automation of design-level security
inspection guidelines, which has not been attempted before.

Training and
Modeling

Manual
Inspection

Actual Flaws
(Ground Truth)

Automated
Detection

Detected Flaws
(Tool Output)

Inspection Guidelines

Analysis of Tool
Performance

Section 3 Section 4

Section 5

DFDs (26)

Tool

Figure 8.1: Research activities and paper structure

In particular, we select a subset of 5 inspection guidelines from the catalog
of Tuma et al. [243] (see Section 8.2.1) and define a technique to perform
the model inspection automatically. We assume that a software system
is modeled as a Data Flow Diagram. This choice of this model type is justified
by the fact that DFDs are widely used in the industry for security analysis
purposes. For instance, DFDs are central to threat analysis and are, therefore,
already available in companies that have a secure software process in place [91].
In addition, a recent case study [15] involving four companies shows that
DFDs are used for threat analysis in agile organizations. We use an enriched
version of DFDs, which are annotated with additional security information (see
Section 8.2.2). As shown in the right-hand side of Figure 8.1, in Section 8.4 we
describe how the inspection guidelines have been (i) represented as model query
patterns by means of VIATRA and (ii) implemented in a prototype tool as an
Eclipse plugin. A match of a model query pattern executed by the tool would
correspond to the presence of a security design flaw in the analyzed DFD.

8.1. INTRODUCTION 159

Table 8.1: Security design flaws from the catalog proposed by Tuma et al. [243]
(flaws in bold are the focus of this work)

Flaw number and name Description

1 Missing authentication An absence of an authentication mechanism in the
system.

2 Authentication bypass There exists an entry point with authentication
mechanism that can be bypassed.

3 Relying on single factor
authentication

The authentication mechanisms rely on the use of
passwords.

4 Insufficient session
management

Sessions are not managed securely throughout
their life cycle.

5 Downgrade authentication Possibility to authenticate with a weaker (or
obsolete) authentication mechanism.

6 Insufficient crypto key
management

Keys are not managed securely throughout their
life cycle.

7 Missing authorization An absence of an authorization mechanism in the
system.

8 Missing access control An absence of access control in the system.
9 No re-authentication An absence of re-authentication during critical

operations.
10 Unmonitored execution Uncontrolled resource consumption due to

interactions with external entities.
11 No context when authorizing An absence of conditional checks for access control.
12 Not revoking authorization An absence of a process for revoking user access.
13 Insecure data storage Storage of sensitive data is in clear or access

control mechanisms are weak.
14 Insufficient credentials

management
Credentials are not managed securely throughout
their life cycle.

15 Insecure data exposure Sensitive data is transported in clear.
16 Use of custom/weak

encryption
Generating small keys, using obsolete encryption
schemes.

17 Not validating input/data Absence of validation checks when receiving data
from external entities.

18 Insufficient auditing Access to critical resources or operations is not
logged.

19 Uncontrolled resource
consumption

Uncontrolled resource consumption of internal
components.

160 CHAPTER 8. PAPER G

To evaluate our technique, we need a ground truth, i.e., design models
(DFDs) that are labeled with information concerning the security design flaws
that are present in each model. Such a data set did not exist and, in general,
the lack of validation data has been a recurring challenge in our field of research.
As shown in left-hand side Figure 8.1, in Section 8.3 we describe how we have
created a curated data set of 26 security-oriented DFDs by enrolling 13
modelers who have worked on 4 different software systems, under controlled
conditions and with the prescriptions of empirical studies. Additionally, we
have employed 2 security experts (co-authors of this paper) to assess the
models. The experts have manually applied the 5 inspection guidelines under
investigation in this work and have identified the design flaws in all models.
The assessment has been performed in an unbiased way, i.e., without any prior
knowledge of how the automated technique works. Further, the experts have
worked independently and have checked each other’s work to a large extent,
which provides assurance about the quality of the resulting data set. The data
set is now publicly available to the research community and has been used in
Section 8.5 in order to validate the automated technique we propose.

Our results (discussed in Section 8.6) show that three inspection guide-
lines have the promising potential of being amenable to automation. Clearly,
these results are valid within the confines of the threats to validity presented
in Section 8.7.

8.2 Background
This section provides some background on design flaws, the catalog of inspec-
tion guidelines, the Data Flow Diagram (DFD) [244] representation, and its
security extensions.

8.2.1 Design Flaws and Inspection Guidelines
We refer to a security design flaw as a weakness in the high-level design of a
system (e.g., software architecture), which exposes the system to security threats.
Flaws may lead to code defects [245]. This paper relies on a catalog of security
design flaws proposed by Tuma et al. [243]. As shown in Table 8.1, the catalog
consists of 19 common security design flaws concerning authentication, access
control, authorization, availability of resources, integrity, and confidentiality of
data. It was compiled by means of a systematic analysis of existing vulnerability
database entries from several sources (CVE [87], CWE [88], OWASP [246], and
SANS [247]). This study focuses on five security design flaws in particular,
marked in bold in Table 8.1.

As shown by the example in Listing 8.1, each design flaw specifies an inspec-
tion guideline. The guidelines were developed for manually determining the
presence of this security design flaw in a software architecture. Each guideline
leads the analyst to the identification of certain locations in the model where
the flaw could be present. At those locations, the analyst has to evaluate some
criteria (rules) in the form of yes/no questions. A ‘no’ answer means that a
flaw is present. To help the analyst, the criteria sometimes refer to certain
security solutions. But, they do not account for all existing security solutions
protecting a data property. For instance, the criterion ‘Is there any form of

8.2. BACKGROUND 161

Security Design Flaw 15: Insecure Data Exposure
Flaw description Data is not transferred in a secure way. For example a web

application uses the HTTP instead of HTTPS. This leaves the channel
vulnerable to eavesdropping, Man In The Middle (MITM) attacks etc.

Inspection guideline to detect this flaw
(i) Locate the valuable information in the model.

(ii) Track them through the architecture to determine where and how
they are transferred.

(iii) At each step examine the following:
(1) Is the reuse of packets prevented (Replay attacks)?
(2) Is there any form of time-stamping, message sequencing or

checksum in the exchanged packages?
(3) Is the data transferred over an encrypted channel (SSL/TLS)?

Listing 8.1: Inspection guideline for flaw 15 [243]

time-stamping, message sequencing or checksum in the exchanged packages?’
does not require cryptographic hashing (as opposed to a simple checksum) to
be satisfied. In addition, TLS provides message authentication in addition to
encryption. Manually exploring design models in such a way is effort intensive
and prone to errors. Therefore, automating this assessment activity is desirable,
especially in the context of frequent design iterations where redoing such an
assessment is prohibitively expensive.

8.2.2 Data Flow Diagram and Security Extensions
In this work, we automate the inspection of DFDs, which are already extensively
used in security threat modeling [9, 190, 208]. The DFD notation is used to
graphically represent a system architecture. It highlights the flows of data,
showing how the information enters, traverses, and leaves the system. Figure 8.2
depicts a high-level DFD for a social network application. The diagram shows
how private users and ad companies (both external entities) interact with the
system, which is modeled as a set of processes for authentication (Authenticate),
core business logic (Service Provider) and access to the persistence layer (DB
access provider). Data is persisted in two data stores: key material is in the
Key Storage, while user data is in the Social Network Database.

The regular DFD notation is limited in denoting security-related information,
making it hard for practitioners to reason about security at design time [45].
To this aim, the DFD notation has been extended in the literature with
security properties [248] and security solutions [249]. As shown in Figure 8.2,
the modeler can specify the type of information that is passed around (e.g.,
sensitive, encrypted data or key material). Furthermore, the modeler can
represent the use of security mechanisms:

(i) secure pipes (optionally with client authentication) to protect the confi-
dentiality and integrity of data transmitted over data flows,

(ii) encrypting data in a data store,
(iii) key management solutions (creation, replacement, and destruction),
(iv) secure log of access to data stores, and
(v) authentication.

162 CHAPTER 8. PAPER G

Service
Provider

DB Access
Manager

Authenticate

Key Storage

Social Network
DatabasePrivate User

Ad Company

Query
Results

View

Query

Credentials, User Data
User Data

{User Data}

View

{User Data}

Keys

Keys

User Data,
Query Results

Credentials

User Data,
Query

Security DFD with data types

Legend

Data FlowProcess
External

Entity
Data
Store

Secure
Store

DFD elements

Key Replacement

Model Extension
Sensitive
{Encrypted}Secure Pipe

A B

Authentication

Legend

Data FlowProcess
External

Entity
Data
Store

Secure
Store

DFD elements

Key Replacement

Model Extension
Sensitive
{Encrypted}Secure Pipe

A B

Authentication

Figure 8.2: A Data Flow Diagram (DFD) of a social network application (with
security extensions)

8.3 A Curated Data Set of Design Models and
Their Security Flaws

The research field of secure design is plagued by the lack of publicly available
‘case studies’ that could be used to validate new techniques. In order to
overcome this shortcoming, we have set up a series of workshops where we
asked 13 participants to model a variety of systems using a DFD-like notation
in a design tool. The resulting models have been analyzed for security flaws by
2 expert assessors. The workshops have been carried out with scientific rigor
in the form of an empirical study (i.e., under controlled conditions) in order to
guarantee the quality of the outcome. The outcome of this study is two-fold:
(i) the creation of a data set of 26 DFD design models enriched with security
solutions and data types, and (ii) for each model, a report of the existing design
flaws (for 5 flaws, shown in bold in Table 8.1) and their locations. All the
material is publicly available on this paper’s companion website [250].

8.3.1 Study Design
Participants and training. The volunteering participants of this study are
13 academic researchers. All participants finished a higher-level degree in
the field of computer science and software engineering and are employed at
two universities in two different countries. About half of participants (8/13,
herein Group A) have a strong background in software design, requirements
engineering and modeling. Yet, they are less experienced in software security.
The other half (5/13, herein Group B) have a deeper understanding of security-
related topics, including secure software design and formal methods for security.
All the participants received a training session of 1 hour. This training session
included an introduction to the DFD modeling notation, the extensions to the
DFD notation used in this work, a brush-up on concepts related to software

8.3. A CURATED DATA SET OF DESIGN MODELS AND THEIR SECURITY FLAWS 163

security, and a demonstration of the design tool they will use. The same
training material has been used at both universities.

Modeled systems. We prepared a brief description (about one page) for
4 different systems. Each description included an explanation of the system
functionality and a list of security requirements.
DriveSafe — A smartphone application for achieving safety on the roads
collaboratively by continuously updating nearby drivers on current road
safety conditions.
BeSocial — A proximity-based collaborative messaging smartphone applica-
tion to support creating and maintaining virtual chat rooms for nearby users.
PhotoFriends — A media sharing smartphone application to enable users
to share photos and build a network of friends.
SmartTex — A collaborative document management web service target-
ing members of the scientific community to support creating, editing, and
compiling LaTeX documents in a collaborative way.

Model creation. In a randomized assignment, each participant was
given the task to model two of the four systems, by using the DFD notation
and its security extension. Individual participants met with the experimenters
for a modeling session of about 3 hours. Each participant received a handout
package including (i) printed training slides, (ii) a cheat-sheet for the model
notation, (iii) a computer with the design tool, and (iv) the descriptions of
the systems they had to model. The descriptions are designed in such a way
that they can be easily understood in a limited amount of time. Further, the
experimenters were available to answer any questions.

Before they started with the task, the participants carried out a short
warm-up modeling exercise (15 min) to get familiar with the tool. Next, they
were given the documentation of their first system. Participants were tasked to
read the documentation carefully, and use the tool to create a DFD enhanced
with security solutions and data types. To enhance the DFD with security
solutions, they instantiated solutions from a provided catalog and bound them
to concrete DFD elements. Similarly, they labeled data flows with data types
according to a provided data type catalog.

During the modeling session the experimenters took notes and monitored
their progress. Finally, the participants were asked to shortly explain their
model. After finishing the first model, they received the documentation for the
second and repeated the task.

As a result of the modeling sessions, we obtained 26 models [250]. Each
DFD model is annotated with labels (e.g., sensitive data) for information assets
on the data flows. Also, the models contain elements representing certain
security solutions, like encryption on data flows, authentication of external
entities, and so on.

Manual model inspection. Two experts manually scrutinized the created
models to identify five types of design flaws (in bold in Table 8.1) by applying
the inspection guidelines described in Section 8.2. As a form of calibration, the
assessors independently inspected four randomly selected models (covering the
four different systems) and then they compared their results in a joint session.
The discussion of the disagreements resulted in the explicit formulation of
common criteria for the subsequent inspections:

(i) If the participant made any mistakes in the use of notation or logical

164 CHAPTER 8. PAPER G

●

●

●

●

●

●

●

PhotoFriends SmartTex

BeSocial DriveSafe

DF P DS EE Sec DF P DS EE Sec

0

10

20

30

40

0

10

20

30

40

Element Type

E
le

m
en

t C
ou

nt

Figure 8.3: Overview of the model sizes per system

mistakes (that is, in case of minor mistakes), the experts agreed to take
their intention into account.

(ii) If two inspection rules (for different design flaws guidelines) triggered a
violation in the same model location, the experts agreed to report only one
flaw for this location (the first time it was found). This is related to the fact
that some inspection guidelines overlap, as discussed later in the paper.

(iii) They agreed to only consider assets that are mentioned in the secu-
rity requirements contained in each system description, despite possible
deviations in the created models.

(iv) They agreed to assess each model in its entirety, including any additional
logic not required according to the documentation.

After the joint session, the experts independently inspected an equal share of
the remaining models, which have been assigned randomly to the assessors
(by blocking on the four systems). On average, the experts spent about 30
minutes to manually inspect a single model. In the end, they marked a total of
five models as requiring further discussion. These models were handed over
to the other assessor for a second inspection. The analysis reports were then
compared, and any disagreements resolved.

8.3.2 The Resulting Data Set
The curated data set that emerged from this study can be found online [250].
The data set includes 26 security enriched DFDs, accompanied by expert reports
of the flaws identified according to the inspection guidelines. In particular, the
flaws are localized on the model and associated to a type (see Table 8.1).

8.3. A CURATED DATA SET OF DESIGN MODELS AND THEIR SECURITY FLAWS 165

● ●

●

●

●

● ●

●●●

●●●

●

Flaw 2 Flaw 6 Flaw 13 Flaw 15 Flaw 18

A B All A B All A B All A B All A B All
0

5

10

15

20

Participant Group

F
la

w
 C

ou
nt

Figure 8.4: The number of flaws per participant group

Statistics about the models. Figure 8.3 depicts the average number of
elements used in the models of each system. On average, a model in our data set
consists of 17.1 data flow elements, 4.9 processes, 2.7 data stores, 1.5 external
entities, and 7.6 security solutions. With respect to element type, the models
are fairly uniform across systems. Similar distributions of DFD element types
have been observed in the related work [10]. Overall, DriveSafe models are
smaller compared to the rest, in particular with respect to the data flows. This
is explained by the fact that DriveSafe has a very simple and unidirectional
interaction model from the users’ perspective.

We also investigate the differences in the created models across participant
groups (i.e., the two campuses). The two groups created models of compara-
ble size. Yet, the number of modeled data flow elements varies more within
Group B (from 10 to 20). This may indicate that participants of Group A
were in fact more experienced in software design modeling and created more
homogeneous DFDs.

Statistics about the violations. On average 15.6 flaws are found on a
single model. First, we investigated the flaws reported by the assessors to make
sure that their analysis was comparable. Overall, the assessors found a similar
number of design flaws of each type.

Second, we investigated the flaws for each of the four systems. Slight
differences can be observed across the four systems. On average, the DriveSafe
models contain the smallest number of flaws (average per model: DriveSafe:
12.5, SmartTex: 15, BeSocial: 17, PhotoFriends: 18.1). As expected, the
average number of flaws seems to correlate with the model size. Systems with
larger models (BeSocial and PhotoFriends) contain on average more flaws.

Figure 8.4 shows the number of security flaws in models created by Group
A, Group B, and both groups together. Notably, the total number of in-
sufficient auditing flaws (Flaw 18), regardless of the group, is much smaller
compared to the other flaws. A possible explanation is that, in contrast to the
other flaws, every instance of this flaw is only associated to a data store element,
of which there are typically just a few in each model (see Figure 8.3). The
number of flaws of type 13, 15, and 18 does not differ significantly across groups.
This suggests that despite a lesser security background, Group A created
similarly (in)secure models with respect to these design flaws. Yet, differences
can be observed for what concerns flaw 6 (crypto key management). Often,

166 CHAPTER 8. PAPER G

«Metaclass»
TransformedData

«Metaclass»
DataType

- sensitive:boolean

«Metaclass»
DataModel

«Metaclass»
DFDElement

-name:EString

0..*
data

0..1
decKey

0..1
encKey

1..1
datatype

0..* dataElements

Figure 8.5: The Data Type Meta-Model

the less security-oriented group (Group A) did not model key management
explicitly, hence making this inspection guideline not applicable. After the
modeling sessions, Group A participants explained that they did not feel
confident in their security knowledge to model cryptographic details. Also,
only a few flaws of type 2 were identified on models created by Group B
(average per group: Group A: 2.8, Group B: 1). Possibly, correctly modeling
authentication requires a deeper understanding of security mechanisms.

8.4 Automated Detection of Flaws
This section describes the design and implementation of the automated design
flaw detection. First, the required model extensions for the automated detection
are presented. Next, we describe how these extensions are leveraged in the
security design flaw detection. Finally, the model query patterns are discussed.

8.4.1 DFD Model Extension
The detection of security design flaws relies on the representation of two key
concepts in the DFD models:

(i) security solutions, which define existing countermeasures, and
(ii) data types, which specify what type of information is being processed

(especially whether it is sensitive or encrypted data).
Security solutions. The design flaw detection leverages information about

existing security solutions in the model. More concretely, checking for the
presence of a design flaw can incorporate the following knowledge:

(i) the presence of security solutions at correct locations in the model (e.g.,
the presence of authentication mechanism at the entry points),

(ii) the correct instantiation of these solutions, and
(iii) the appropriateness of the protection provided by the solution with respect

to the involved sensitive data.
The existing representation of Sion et al. [249] is used to model the security
solutions and capture their effects.

Data types. Data types are an essential concept in security design flaw

8.4. AUTOMATED DETECTION OF FLAWS 167

Table 8.2: The use of DFD model extensions for flaw detection

Extension Name Affected Threat Types Flaws

Secure pipe Information disclosure, Tampering,
Spoofing

2, 15

Secure pipe with client
authentication

Information disclosure, Tampering,
Spoofing

2, 15

Authentication Spoofing 2
Encrypted storage Information disclosure 13
Key creation — 6
Key replacement — 6
Key destruction — 6
Secure logging Repudiation 18

Sensitive data — 2, 13, 15, 18
Encrypted data Information disclosure 2, 6, 13, 15
Crypto key data — 2, 6, 13, 15
Session data — 2

descriptions [251] and are thus required in the models to support their detection.
A concrete DFD is extended with a data model, which is a catalog of all data
types that are used in the DFD. All elements in the model (i.e., processes,
data flows, data stores, external entities) are linked to the relevant data types
in the catalog to track how data moves across the system. Furthermore, the
data model allows one to express the relationship between an encrypted piece
of data and the original data, including the key (data type) used for encryption
and decryption. This way, we capture the notion that ‘encrypted’ data is a
transformation of the original (sensitive) data, such that we can still track
where sensitive data is sent or stored after it has been encrypted. Figure 8.5
shows the meta-model we created for this study to represent these data types.
The encrypted version of data is represented as a TransformedData instance.

8.4.2 Leveraging the Extensions for Detection
Table 8.2 illustrates how the DFD model extensions are used for flaw detection.

The top part of this table shows the relationship between security solutions,
threat types, and flaws. Rather than hard-coding the set of solutions that can
impact the detection of a flaw, the detection criteria of flaws 2, 13 and 15 are
expressed using a threat type (e.g., ‘information disclosure’). The solutions are
associated to the threat types that they prevent. Note that the actual relation-
ship that is implemented in the detection logic is more involved, because it also
needs to be verified that an instantiated solution prevents the threat at the
correct model location to avoid a flaw. For the key management and logging so-
lutions, the detection logic (for flaws 6 and 18) directly checks for their presence.

The bottom part of Table 8.2 shows the data types used in this study, and
the corresponding flaws that rely on these data types in their detection logic.

8.4.3 Detecting Flaws
The security design flaws in focus (see Table 8.1) were translated to a set of
criteria to enable their detection. Below, we describe how the query patterns
detect instances of these flaws in concrete models.

168 CHAPTER 8. PAPER G

Authentication bypass (Flaw 2). This flaw is detected by first filtering
for data flows from an external entity to a process which transfer sensitive data.
For each of these data flows the flaw triggers if:

(i) the data is sent without protection against information disclosure; or
(ii) there is no protection against spoofing the external entity.

Further, in the case of session data type, the flaw also triggers when there is
no protection against tampering.

Insufficient crypto key management (Flaw 6). This flaw is detected
by filtering for DFD elements handling a data of type key. The flaw triggers if:

(i) the key is insecurely distributed (i.e., there is no protection on the flow
against information disclosure, tampering, and spoofing on data flows or
processes),

(ii) the key is stored insecurely (i.e., there is no protection against information
disclosure and tampering on data stores),

(iii) a solution for key creation is missing,
(iv) a solution for key replacement is missing, or
(v) a solution for key destruction is missing.

Insecure data storage (Flaw 13). This flaw is detected by filtering for
data stores containing sensitive data and triggers if:

(i) the sensitive data is not encrypted (i.e., is not stored as an ‘encrypted’
TransformedData), or

(ii) there is no solution to protect against information disclosure.
Insecure data exposure (Flaw 15). This flaw is detected by filtering

for data flows transferring sensitive data and triggers if:
(i) the sensitive data is not encrypted, or

(ii) there is no solution to protect against information disclosure.
Insufficient auditing (Flaw 18). This flaw is detecting by filtering for

data stores containing sensitive data and triggers if there is no solution to
provide secure logging of access to this data store.

To avoid biasing the results of this work, the development of the query
patterns was carefully isolated from the model creation step, and the manual
model inspection (see Section 8.3). First, the implemented query patterns were
tested against a separate example system (not part of the data set). Second,
implementing and testing the query patterns was completed before the start of
participant training. Finally, the experts that performed the manual inspection
were not aware of how the automated detection was implemented.

8.4.4 Implementation
This section briefly describes the implementation of the tool provided to the
participants, and the detection of security design flaws.

To provide the participants with a tool environment to create the models,
we have developed a modeling tool based on the Eclipse platform. The tool
uses Ecore1 to express the meta-model of DFDs, security solutions, and the
data types (as discussed earlier). Furthermore, a graphical modeling editor
was developed using Sirius.2

To detect the security design flaws, the above criteria are implemented with
1https://www.eclipse.org/ecore
2https://www.eclipse.org/sirius

https://www.eclipse.org/ecore
https://www.eclipse.org/sirius

8.5. PERFORMANCE OF THE AUTOMATED INSPECTION TECHNIQUE 169

// Pattern for Security Design Flaw 15
pattern insecureDataExposure(df : DataFlow){

// only data flows with sensitive data
DataFlow.data(df,data);
find sensitiveDataType(data);

// if sensitive info is not encrypted
neg find dataEncrypted(data);
// and there is no appropriate solution
neg find flowMitigationAgainstInfoDiscl(df);

}

// Helper pattern to find sensitive data
private pattern sensitiveDataType(dataType : DataType) {

// data type itself is sensitive
DataType(dataType);
DataType.sensitive(dataType,true);

} or {
// data type is transformation of sensitive data
TransformedData(dataType);
TransformedData.data(dataType, data);
find sensitiveDataType(data);

}

Listing 8.2: Insecure data exposure query pattern in VIATRA

VIATRA model query patterns3 (see, for example, Listing 8.2 for the pattern
for flaw 15). Every security design flaw is specified as a pattern. These patterns
are typed with the meta-model elements and declaratively list the criteria
for triggering the flaw. To specify more complex situations, the presence
or absence of other helper patterns can be used. For example, Listing 8.2
shows how the detection of insecure data exposure can only match if there is
sensitive data involved, which can be a data type with the ‘sensitive’ flag set
to true, or a TransformedData of sensitive data (determined recursively). The
automated detection in concrete user models uses the VIATRA query engine to
automatically query the model and provide a list of all the discovered matches
in the model, which are exported for subsequent analyses.

8.5 Performance of the Automated Inspection
Technique

We have analyzed the 26 models described in Section 8.3 with the automated
inspection tool described in Section 8.4.

8.5.1 Research Questions
We measure the performance of the query patterns in terms of precision and
recall with respect to the ground truth, i.e., the inspection performed by expert

3https://www.eclipse.org/viatra

https://www.eclipse.org/viatra

170 CHAPTER 8. PAPER G

assessors. Accordingly, we pose two research questions.
RQ1. What is the precision of the automated inspection guidelines (imple-

mented as query patterns) for the detection of five security design flaws?
We measure true positives (TPs) and false positives (FPs) to calculate the

precision P = T P
T P +F P . A true positive is a flaw (guideline violation) which is

detected by the tool and that matches an actual flaw reported by experts (i.e.,
part of the ground truth). A detected flaw matches an actual flaw when they
have the same type (design flaw ID) and are attached to the same location in the
diagram (model element ID). Otherwise, the flaw is considered a false positive.

A high precision would mean that the automated detection produces a low
number of false alarms, which makes the technique meaningful in the context
of design-level security analysis by focusing the attention of the analyst. As
a term of comparison, the precision of manual design analysis techniques is
known to be high (e.g., 0.81 in [10]).

RQ2. What is the recall of the automated inspection guidelines (imple-
mented as query patterns) for the detection of five security design flaws?

To calculate the recall R, we measure false negatives (FNs), and calculate
R = T P

T P +F N . A false negative is an actual flaw (i.e., part of the ground truth)
which is not detected by the tool.

A high recall would mean that the automated detection is able to find most
actual flaws that are present in the model, providing assurance to the analyst
regarding its completeness. However, we remind that the recall of manual
design analysis techniques is known to be low (e.g., 0.36 in [10] and around
0.50 in other studies [210]).

8.5.2 Results
Table 8.3 presents a summary of the performance results. As shown in the
last row, the overall average precision of the automated technique is P=0.53
and the recall is R=0.76. As shown in Table 8.4 these results are consistent
across the four analyzed systems, i.e., there are only small variations in how
the technique performs in different systems. The results for about half of the
models (15/26) were inspected by the first author against the ground truth
to determine if the FPs of the tool were in fact overlooked flaws by experts.
Though we did not find many overlooked flaws in the ground truth, a more
systematic quality evaluation would be beneficial for the data set.
The first take home message is that, not surprisingly, it is very hard
to attain good performance (precision and recall) when automating the
inspection rules. Compared to manual threat analysis techniques (e.g.,
STRIDE), the precision of our automation is too low to replace expert
analysis. However, the higher value of recall is somewhat encouraging, as
the automated technique could be used to present an expert with a list
of potential issues to sieve through.
The second take home message is that some rules seem to be more promising
than others as being amenable to automation. Indeed, the precision and
recall differ significantly across the query patterns implementing the 5
inspection guidelines, as shown in Table 8.3.

In the rest of this section we analyze the reasons for false positives and false
negatives in the detection of each design flaw. We start from the query patterns

8.5. PERFORMANCE OF THE AUTOMATED INSPECTION TECHNIQUE 171

Table 8.3: Precision (P) and recall (R) of the query patterns

Security Design Flaws TP FP FN P R

Flaw 2: Authentication bypass 28 58 29 0.33 0.49
Flaw 6: Insufficient key management 56 36 4 0.61 0.93
Flaw 13: Insecure data storage 76 16 31 0.83 0.71
Flaw 15: Insecure data exposure 166 162 24 0.51 0.87
Flaw 18: Insufficient auditing 8 28 17 0.22 0.32

Total 334 300 105 0.53 0.76

with a lower precision and recall (i.e., flaws 18 and 2—in order of increasing per-
formance) and continue with the query patterns with a slightly better precision
and recall (i.e., flaws 15, 16, and 13—in order of increasing performance).

Insufficient auditing (Flaw 18) achieved the worse precision (0.22) and
recall (0.32). The inspection guidelines for this flaw dictate an analysis of logging
mechanisms for critical resources and operations. One possible explanation for
the high number of FPs (28 compared to 8 TPs) is that the participants chose
to model assets as sensitive, even when they were not (e.g., “list of user followers”
is public in the context of a social network application, but was sometimes
labeled as sensitive.). A correct data model is crucial for automated detection
since most inspection guidelines suggest focusing on security critical information
in the model. Given an incorrect data model, the query pattern was looking for
flaws in the wrong locations, producing FPs. During the manual inspection of
the results vis-a-vis the ground truth (on 15/26 models), we have marked such
FPs to determine their weight. For this flaw, 4 out of 17 FPs were due to
mislabeled assets. Therefore, aligning the sensitivity of the modeled assets to
the expert analysis would already increase the precision of detecting this flaw.

Authentication bypass (Flaw 2) requires inspecting the entry points
of the system to determine if authentication is modeled correctly between
the external entities and the processes of the system. In total, there are
57 actual flaws (TPs + FNs) of this type. Yet, the query pattern detects
86 flaws (TPs + FPs). Out of those, many are FPs (58), and only 28 are
TPs. We provide two possible explanations. First, the experts took modelers’
intention into account while inspecting the models. If the participants modeled
authentication incorrectly, minor mistakes were intentionally overlooked, and
the flaw was not reported. The query pattern does not perform any quality
check of the diagram, which yields FPs. Second, compared to the query
patterns, experts often reported this flaw on different DFD elements. Given
that the DFD model is a kind of directed graph, our model distinguishes
incoming (element is consuming the data) to outgoing data flows (element is
sending data). The query patterns report this flaw on the outgoing data flows
(i.e., for the data being sent from the external entity), whereas the experts
reported this flaw on the incoming data flow (i.e., for the data being consumed
by the external entity). This yields both FNs and FPs.

Insecure data exposure (Flaw 15) achieved a high recall (0.87) but
performed worse in terms of precision (0.51). Similar to flaw 18, a possible
explanation for the high number of FPs (162 compared to 166 TPs and 24
FNs) is an incorrect data model. Here, the assets are traced, and the flaws
are reported for each model element, from asset source to asset sink. Thus,

172 CHAPTER 8. PAPER G

Table 8.4: Overall precision and recall across systems

System TP FP FN P R

BeSocial 95 88 24 0.52 0.80
DriveSafe 67 59 21 0.53 0.76
PhotoFriends 95 70 32 0.58 0.75
SmartTex 77 83 28 0.48 0.73

incorrectly labeled assets may have a larger impact on the precision and recall
of the query pattern for detecting design flaw 15. The relatively small number
of FNs (24) shows that, at least, violations were not overlooked by this query
pattern. This also suggests that the participants over-approximated (rather
than under-approximated) the sensitivity of assets.

Insufficient key management (Flaw 6) achieved the highest recall (0.93)
but performed worse in terms of precision (0.61). The inspection guidelines
for insufficient key management suggest identifying cryptographic keys in the
model, and analyzing their distribution, storage, creation, replacement, and
destruction. The extensions to the DFD notation enable modeling key creation,
replacement, and destruction. These security solutions are linked to the assets
(of type ‘key’) and are checked for presence by the execution of the query pattern.
For key distribution and storage, the query pattern leverages helper queries
implemented for detecting design flaws 15 and 13, respectively. Therefore, the
observed FPs occur for similar reasons to the ones discussed in those flaws.

Insecure data storage (Flaw 13) achieved a fairly acceptable recall
(0.71), and a relatively good precision (0.83). We investigated the reason for a
sub-optimal number of FNs. One possible explanation is that the inspection
rules for security design flaws 13 and 18 overlap. For instance, consider the
inspection rule “Is access to data logged?” (from Flaw 13) and “Is access to
sensitive data and operations logged?” (from Flaw 18). A systematic application
of the inspection rules therefore results in reporting the same violation twice
(once for Flaw 13 and once for Flaw 18). During model inspection, experts
agreed to report such a flaw only once (the first one they found, which was
usually while inspecting for Flaw 13). Instead, missing logs of access trigger
the query pattern detecting Flaw 18 (and not Flaw 13). This yields FPs for
the pattern detecting Flaw 18, and FNs for the pattern detecting Flaw 13.

8.6 Discussion
This section discusses the construction of the data set, and the challenges
specific to automating design flaw inspection.

8.6.1 Creation of the Data Set
During the creation of the data set we have taken additional steps to ensure that
the expert assessors calibrated their inspection to achieve repeatable results.
Even so, 33% of the reported flaws (over 5 problematic models) were not agreed
upon and had to be revisited. The experts had to agree on a common strategy
for understanding different requirement interpretations and handling modeling

8.6. DISCUSSION 173

ambiguities. This required more calibration than anticipated.
Requirement interpretations. Early-architecture design models are of-

ten created from incomplete system descriptions. Therefore, creating such
models means dealing with unknowns and under-specified documentation. If
the participants made functional mistakes, the experimenters intervened and
warned them to revisit the system description. A systematic assessment of
functional correctness was not carried out, as this was seldom the case. But,
some security requirements were interpreted differently by our participants.
For instance, the requirement: “In no event, the documents of a customer
should be exposed due to a security breach. Hence, the documents have to be
stored securely,” was often understood to require assurance of confidentiality
(of documents) for transfer and storage. Another interpretation is that the
documents must be stored in a secure storage to which access is logged. In par-
ticular, Group A (less security background) often made over-approximations
when interpreting security requirements. Different requirements interpretations
caused participants to extend the DFD with a different data model and, in
consequence, different security solutions. This has an effect on the presence or
absence of security design flaws. To understand the model (in particular the
rationale for extensions), the assessors had to reconstruct the rationale for the
created data model vis-a-vis the requirements.

Modeling ambiguities. Different modelers have a variety of ways to
model the same software system with the same requirements. As shown in Fig-
ure 8.3, models of the same system can vary in size (e.g., the largest (56)
and smallest (17) BeSocial model). These different modeling options have
an effect on the presence or absence of security design flaws. For instance,
sometimes the participants modeled interactions between the external entity
and an authentication process, and between the external entity and all pro-
cesses representing system functionalities. The participants implicitly assumed
sequential and conditional data flows (i.e., the authentication process is invoked
first, and only upon success, can the other functionalities be executed). Since
the extended notation does not allow a specification of conditional or sequential
data flows, this model is ambiguous, and the authentication bypass flaw could
be present. The assessors had to interpret the modeler’s intention to handle
ambiguously modeled DFDs.

To help a manual inspection, we see benefit in (i) operationalizing the
guidelines for inspection with reference to element types, and (ii) introducing
quality checks for the extended DFD notation.

8.6.2 Automation
In what follows we describe challenges specific to the automation of design flaw
detection and discuss how they can be overcome.

Informal notation. The query patterns were developed by translating
natural language inspection rules to relations between elements of the extended
DFD notation. According to this translation, the query patterns search for
concrete diagram element combinations that are incorrect or problematic. Such
an implementation can be broad (e.g., checking for the absence of a security
solution). Still, this cannot account for all potential modeling options as
modelers may apply shortcuts and (un)intentionally circumvent the detection

174 CHAPTER 8. PAPER G

mechanism. For instance, if the model does not contain sensitive assets, the
query patterns will not find insecure data exposure flaws on data in transit.
Therefore, the security design flaw detection inherits the problems from the
DFD modeling ambiguities.

Modeler assumptions. Furthermore, any model-based detection mech-
anism relies on these models to precisely reflect the modeler’s intentions. It
may, however, be possible (due to misinterpretations) that the models actually
represent a different situation than intended by the modeler. For example,
modeling application-level encryption, but specifying the resulting encrypted
data as sensitive, will cause automated assessments to consider the encrypted
data not to be protected against information disclosure.

Similarly, the modeling concept of data is very open and supports many
interpretations of which data types exactly would need to be modeled. Given the
reliance of some flaws on the sensitivity of data as a key criterion to determine
their applicability, the degree of detail in modeling data and correctly assigning
its sensitivity has a considerable impact on the detection, as shown in the
example with the encrypted sensitive data above.

Going forward. The query patterns are executed on finished models,
aiming to achieve a fully automated design flaw detection. This approach does
not explore the potential benefits of providing modeling feedback to the modeler
while the model is being constructed. Computer-aided detection could overcome
some of the modeling challenges discussed above. For instance, our approach
could be extended with an appropriate user interface to guide modelers and alert
them for potential security design flaws, continuously. Such guidance can also
assist modelers in avoiding modeling ambiguities and ensure a more accurate
detection of security design flaws. Finally, our approach can be extended to
implement the detection of other security design flaws from the catalog.

8.7 Threats to Validity

8.7.1 Internal Validity
The threats to internal validity that we have identified relate to: (i) the
descriptions of the four systems, (ii) the construction of the DFD models, (iii)
the extension of the DFD models with the data types, and (iv) the construction
of the expert assessment baseline.

Descriptions of the four systems. Some of the security requirements
mentioned in the descriptions of the four systems might have required the
participants to use security solutions which were not provided (as out-of-the-box
extensions) or straightforward to model. This threat also relates to the limited
security expertise of some participants. In addition, some security requirements
were open to interpretation (as discussed in Section 8.6).

Construction of the models. For the construction of the 26 models
there are three concerns. First, the participants had a limited familiarity with
the graphical user interface of the modeling tool. To counter this threat, all
participants started with a warm-up modeling exercise to ensure they were able
to create models and had no remaining questions. Also, at least one author
was always present to assist in case any questions or issues arose. Second, the
learning effect of working on two systems per participant was controlled by a

8.8. RELATED WORK 175

balanced distribution of the systems. Third and finally, the participant might
have perceived some stress in trying to create the models in the foreseen time
slots and fatigue due to the length of the session. However, we remark that all
participants finished earlier and they could take short breaks if needed.

Extending the models with data types. Since there was no graphical
modeling support for adding the data types, participants had to use textual
labels on the data flows to specify the data types. These descriptions later had
to be included in the model to enable the automated flaw detection patterns to
take them into account. We consider the threat of modeling errors that could
have been introduced by the authors, when creating the data model from the
textual labels. To reduce the impact of errors in the modeling, all models have
been checked by two authors.

Construction of the expert assessment. Concerning the assessment
of the models by the two experts, we acknowledge that such an assessment
could contain errors. For instance, the experts had to interpret the modelers’
intentions when assessing the presence of the security design flaws. However,
the probability of these errors has been minimized by applying two separate
calibration steps between the security experts that performed the assessment.

8.7.2 External Validity
With respect to the generalization of the results, there are two main threats
to the external validity. First, the participants might not be representative
of industry professionals. All the participants were researchers with modeling
experience, while 5 out of 13 participants had security expertise. Second, the
results might be specific to the systems used in this paper. To reduce the
impact of this threat, we relied on four different system descriptions which were
randomly assigned to the different participants. However, these four systems
are relatively similar in size because the participants had to be able to create
them in a limited amount of time. An evaluation on systems with varying sizes
may be useful to evaluate the impact of the model sizes on the effectiveness
of the automated detection.

8.8 Related Work
In this section, we position our contributions in the context of the related work
on automating security design analysis. We also discuss related security design
flaw catalogs and works on automating the detection of architectural bad smells
and anti-patterns.

8.8.1 Automation of Security Design Analysis
Recently, Seifermann et al. [43] presented an approach for automatically an-
alyzing security of data-driven architectures. To this aim, they propose an
architectural description language enriched with a data model. They transform
the architecture to an operation model, which in turn, is automatically trans-
formed to a logic program, where the security analysis is executed. Similar to
our data transformations, Seifermann et al. define data processing operations,
which seem to be essential for analyzing confidentiality. But, our detection also

176 CHAPTER 8. PAPER G

considers existing countermeasures. Further, Seifermann et al. demonstrate
the analysis with logical rules for detecting unauthorized access. Instead, our
work is automating the detection of flaws related to several concerns (namely,
authentication, confidentiality, integrity, and accountability).

Almorsy et al. [44] propose an approach for automating security analysis
by means of capturing security metrics and vulnerabilities as constraints over
a detailed system description model. It is beneficial for the analysis to consider
system vulnerabilities and defenses side-by-side. Similarly, our query patterns
consider design flaws with respect to the security solutions. In addition, the
constraints developed by Almorsy et al. [44] rely on the modeler to provide a
model. In particular, the constraint about data tampering seems similar to our
query pattern detecting insecure data exposure (15). Yet, the introduced con-
straints detect attack scenarios (e.g., denial of service) and assess the system’s
implemented security (e.g., defense-in-depth), rather than security design flaws.

Berger et al. [45] develop graph query rules to check for vulnerabilities in
extended DFD models and evaluate them with case studies. Similar to this
work, these rules are based on the descriptions of existing repositories (namely,
CWE, and CAPEC). In addition, their approach also extends the DFD model
with asset sensitivity. Among others, Berger et al. develop queries to check
for authentication bypass and clear text transmission of sensitive information
(similar to our query patterns for flaws 2 and 15). An important distinction is
that our DFD extended notation includes security mechanisms.

UMLsec [57, 252] is a security extension of the Unified Modeling Language.
It enables developers to express security relevant information in system specifi-
cation diagrams. Similar to our approach, UMLsec relies on security extensions
to automatically analyze design models. In contrast, our approach is focused
on detecting early security design flaws on architectural models, as opposed to
evaluating constraints over specification diagrams.

Katkalov et al. [65] developed a model-driven approach (IFlow) for specifying
and analyzing information flow properties on UML models. The authors extend
the UML model and transform it to a formal model, which is used to refine
the UML generated code skeleton. The proposed approach can leverage static
analysis to verify information flow properties in the implemented code skeleton,
as well as an interactive theorem prover to verify the properties on the formal
model. Similar to this work, IFlow requires the developer to provide information
about the sources (of confidential information). In contrast, IFlow is a formal
approach that analyzes the non-interference property.

Hoisl et al. [91] present an approach for modeling and enforcing object flows
in process-driven Service-Oriented Applications (SOAs). The authors provide
a metamodel for defining and enforcing secure object flows in process-driven
Service-Oriented Architectures and develop model transformations to generate
platform specific models. Similar to the data transformations in our data
model, they introduce a semantics of control nodes (i.e., fork, join, decision,
and merge) to reason about secure object flows. In addition, their approach is
used to automatically analyze the confidentiality and integrity of data flows in a
model representation. But, this work extends the model notation with security
solutions and focuses on the detection of a variety of security design flaws.

Frydman et al. [92] propose an approach accompanied by a tool (AutSEC)
for automating threat modeling and risk assessment of software designs. To

8.9. CONCLUSION 177

identify threats in annotated DFDs, the authors introduce identification and
mitigation trees. They obtain the DFD annotations by maintaining maps of
common DFD element labels (e.g., web server can be mapped to the “Apache”
label). Similar to this paper, Frydman et al. extract information about assets
and security mechanisms from the user-extended DFDs. Yet, their diagram
extensions are based on user-provided labels and map-like data structures. In
contrast, this work allows modelers to explicitly model data properties and
security solutions in DFDs.

For a more detailed account on automated design analysis techniques, we
refer the reader to a systematic literature review [208].

8.8.2 Security Design Flaw Catalogs
We briefly mention the related work on security design flaw catalogs. Santos
et al. [253] compiled a catalog of common security architectural weaknesses.
Similar to the catalog used in this work, their catalog focuses on design-level
security flaws. Arce et al. [241] compiled a list of top 10 security design flaws to
raise awareness among software architects about the most common design issues
leading to security breaches. Indeed, a few inspection guidelines of the catalog
used in this study are in line with this list (e.g., ‘use cryptography correctly’ is
related to our design flaw 6). Nafees et al. [238] propose a template for detecting
architectural anti-patterns and a catalog of 12 Vulnerability Anti-Patterns. The
purpose of their catalog is to bridge the communication gap between security
experts and software developers. We also mention the existing corpora (i.e.,
CWE, CVE, OWASP, SANS, CAPEC) describing common security weaknesses,
vulnerabilities, and mitigations.

8.8.3 Architectural Bad Smells and Anti-Patterns
We briefly mention the related work on detecting architectural bad smells and
anti-patterns but remind the reader that none of these approaches analyze
the architecture with respect to security. Bouhours et al. [235] introduce a
catalog of so called ‘spoiled patterns’ and automatically detect them in archi-
tecture models. To this aim, they extend an existing OWL ontology. Their
approach suggests according model transformations to the user. Taibi and
Lenarduzzi [236] compile a catalog of 11 bad smells specific to microservice
architectures by means of conducting interviews with developers. They empha-
size the importance of analyzing microservices that expose private data and
shared resources, which is interesting from a security perspective. For a more
complete account of existing literature on design smells detection we refer the
reader to the mapping study by Alkharabsheh et al. [254].

8.9 Conclusion
This paper has presented three main contributions. First, we have shared with
the research community a data set of design models (in a notation based on
DFD), created by thirteen participants with a varied background, that model
four systems with a varied set of security requirements, and that are annotated
with identified design flaws. These models can be used to validate existing and

178 CHAPTER 8. PAPER G

future security techniques. Second, we have attempted to automate five model
inspection guidelines for security to detect secure design flaws. These guidelines
are meant to be used by security experts and, hence, are difficult to automate, as
humans are better suited to execute tasks that involve fuzzy and/or incomplete
instructions. Third, we have performed an empirical evaluation that, compared
to the ground truth created by manual analysis, shows that automating some
of the guidelines is possible with acceptable precision and recall, albeit others
are more challenging. Also, our work has pointed out some limitations (e.g.,
overlaps, unclear rules) in the inspection guidelines themselves. As part of the
future work, the results of this paper are being used to improve the quality of
the inspection guidelines. Further, we are interested in extending the data set
and particularly welcome the contribution of the wider research community.

Chapter 9

Papers H & I

This chapter is based on
Security Compliance Checks between Models and Code

based on Automated Mappings,

written by
S. Peldszus, K. Tuma, D. Strüber, J. Jürjens, and R. Scandariato,

published in
Proceedings of the International Conference on Model Driven

Engineering Languages and Systems (MODELS), 2019

&
Checking Security Compliance between Models and

Code,

written by
K.Tuma, S. Peldszus, R. Scandariato, D. Strüber, and J. Jürjens,

submitted to
Journal on Software and Systems Modeling (SoSyM), 2020.

Note that Paper I subsumes Paper H, thus only Paper I is appended in what follows.

179

Abstract
The verification that planned security mechanisms are actually implemented
in the software code is a challenging endeavor. In the context of model-based
development, the implemented security mechanisms must capture all intended
security properties that were considered in the design models. Assuring this
compliance manually is labor intensive and can be error-prone. This work
introduces the first semi-automatic technique for secure data flow compliance
checks between design models and code. We develop heuristic-based automated
mappings between a design-level model (SecDFD, provided by humans) and a
code-level representation (Program Model, automatically extracted from the
implementation) in order to guide users in discovering compliance violations,
and hence potential security flaws in the code. These mappings enable an
automated, and project-specific static analysis of the implementation with
respect to the desired security properties of the design model.

We contribute with (i) a definition of corresponding elements between
the design-level and the implementation-level models and a heuristic-based
approach to search for correspondences, (ii) two types of security compliance
checks using static code analysis, and (iii) an implementation of our approach as
a publicly available Eclipse plugin, evaluated with three studies on open source
Java projects. Our evaluation shows that the mappings are automatically
suggested with up to 87.2% precision. Further, the two developed types of
security compliance checks are relatively precise (average precision is 79.6% and
100%), but may still overlook some implemented information flows (average
recall is 65.5% and 94.5%) due to the large gap between the design and
implementation. Finally, our approach enables a project-specific analysis with
up to 62% less false alarms raised by an existing data flow analyzer.

180 CHAPTER 9. PAPERS H & I

9.1 Introduction
For decades, organizations have been concerned with the security of their
software throughout the entire development process. According to the principle
of security by design [7, 255], the analysis of system assets vis-a-vis security
threats needs to be carried out already in the design phase of the development
process. In this context, threat analysis techniques (e.g., STRIDE [9], attack
trees [207], CORAS [25], and threat patterns [124]) aim to identify security
threats to software systems by scrutinizing the architectural design. But,
empirical evidence shows that existing threat analysis techniques can be labor
intensive [10] and lack in automation [208].

Threat analysis is often performed on a graphical representation of the
software architecture called Data Flow Diagram (DFD) [11, 249]. DFD-like
models are extensively used in practice, e.g., in the automotive industry [14],
at Microsoft [9], and some agile organizations [15]. Still, the DFD notation is
informal and lacks the ability to specify security properties, which are needed
to reason about security threats at the design level [256]. To support the
detection of problematic information flows at the design level, previous work
extends the DFD notation with security-relevant information [90, 249] and
security semantics [248]. This work uses one such extended notation, namely
the Security Data Flow Diagram, in short, SecDFD [248] (cf. Section 9.2).

Once a design model has been analyzed and its security flaws fixed, the
results are of limited value if the implementation does not comply with the secu-
rity properties described in the model. Further, design models tend to be useful
during the design phase, but are often ignored after the system is implemented.
In particular, empirical evidence shows that only a fraction of open source
projects (26% of the investigated projects in [12]) ever update their UML files at
least once. Thus, there is a disconnect between the architectural design models
(containing important security decisions) and the implemented system and its
defenses. To be useful for security compliance analyses, an automated connec-
tion between the design model and its implementation needs to be established.

Having this connection could also benefit to static code analysis. Indeed,
existing static analysis tools may report violations which are afterwards labeled
as false alarms [94]. All reported violations have to be manually sieved through,
and, more importantly, the true violations must be distinguished from the false
alarms. This is not a trivial task for static program analysis in general, and
in particular it is not trivial for static security analysis (as observed by an
industrial experiment in [95]). Making such distinctions can be improved by the
contextual information which can be derived from the (connected) design model.

To address these issues, we have proposed an approach to support compliance
analysis between models and code, and extend it with security compliance
checks in this work. Specifically, we have previously proposed a user-in-the-loop
approach (cf. Section 9.2.3 and Peldszus et al. [257]) to support compliance
checks between a design-level data flow diagram enriched with security-relevant
information (SecDFD) and an implementation-level model called Program
Model, or PM for short (cf. Section 9.2.2). To this aim, we have made the
following contributions:

(i) We presented an automated technique for establishing mappings between
SecDFDs and PMs (Section 9.3), thereby supporting the discovery of

9.1. INTRODUCTION 181

structural compliance violations. The key idea of our technique is twofold.
First, we defined a mapping between SecDFD and PM element types,
constraining how elements of a concrete system can be mapped to each
other. Second, we combined similarity-based matching of element names
with structural heuristics (based on data flow properties) to automatically
derive suggested mappings.

(ii) We presented an incremental technique where the user is (a) involved in
discovering an adequate mapping and (b) able to inspect the planned
security properties against the implementation.

(iii) We implemented (Section 9.5) the approach as a publicly available Eclipse
plugin and evaluated it (Section 9.6.1) on five open source projects.

In this paper, we present three extensions which allow an automated security
analysis between SecDFD and its implementation:

(i) We develop static checks to verify security properties (i.e., SecDFD
contracts) in the implementation (Section 9.4.1). Specifically, we develop
two types of checks: a rule-based check for cryptographic contracts
(encrypt and decrypt) and a local data flow check for data processing
contracts (forward and join).

(ii) We develop an automated extraction of project-specific sources and sinks
of confidential information from the design, which we leverage to reduce
the number of false alarms raised by an existing data flow analyzer
(Section 9.4.2).

(iii) We extend our implementation (Section 9.5) with (a) automatically exe-
cutable security compliance checks, (b) additional user-interface function-
alities (e.g., the graphical view of the SecDFD, mapping several SecDFD
models, etc.), and (c) an improved mapping serialization.

We evaluated the previously proposed approach with an experiment (Sec-
tion 9.6.1) which showed a high precision and recall of the suggested map-
pings [257]. Further, we have shown that the user has an impact on the
suggested mappings, and can steer the automation. Two studies were con-
ducted to evaluate the extensions presented in this paper (Section 9.6.2 and
Section 9.6.3), where we measure the precision and recall of the security contract
checks, and the impact of using the SecDFD model to derive project-specific
sources and sinks on the number of false alarms raised by an existing data flow
analyzer. The security compliance checks developed for the cryptographic pro-
cess contracts are very precise (average precision is 100%) and rarely overlook
implemented cryptographic operations (average recall is 94.5%). In comparison,
the local data flow security compliance checks are less precise (average precision
is 79.6%) and may overlook more implemented flows (average recall is 65.5%).
Considering the vast gap between design models and their implementation,
this is still an encouraging result. In addition, we show that the proposed
approach enables a project-specific taint analysis with up to 62% less false
alarms. Evidently, these results are valid within the bounds of the threats
to validity presented in Section 9.7. We position our contributions in the
context of the related work in Section 9.8 and present the concluding remarks
in Section 9.9.

182 CHAPTER 9. PAPERS H & I

9.2 Background
This section describes the background on the design-level model,
implementation-level model, architectural compliance, and data flow anal-
ysis. We consider the Eclipse Secure Storage [258] to illustrate the models
considered in this work. The secure storage allows plugins to store and access
secret data. This functionality is used, for example, by the Git extension of
Eclipse to store user names and passwords [259].

9.2.1 Design-level model (SecDFD)
At design time, the processing of system data can be specified with a vari-
ety of notations. Apart from DFDs, frequently used notations are activity
diagrams [260] and business process models (BPMN [261]). Our rationale
for focusing on DFDs is twofold: First, they are widely applied in practice,
specifically, in the automotive industry [14] and at Microsoft [9] as part of their
STRIDE methodology. Second, they represent an essential set of concepts
necessary for data flow analysis (processes and data flows between them),
which be can mapped exhaustively to activity diagrams and business processes,
rendering our mapping generation technique also applicable to these model
kinds. We introduce our technique for DFDs, but it can be applied to a broad
range of modeling languages supporting data flow modeling.

In what follows, we introduce DFDs and an extended notation which allows
to include security-relevant information in DFD models, which is required
for checking the consistency between planned security and implemented
security properties.

Data Flow Diagrams (DFDs). A Data Flow Diagram (DFD) is a
graphical representation of the software architecture and the information it
handles [9]. It represents how the information enters, leaves, and traverses the
system. The DFD consists of processes (active entities), external entities (e.g.,
3rd parties), data stores (where information rests), data flows (carrying the
exchanged information), and trust boundaries (signaling trust levels). Fig. 9.1(a)
depicts a DFD for the Eclipse Secure Storage. The plugin attempts to access a
secret by sending a request including path information of where to look for the
secret (e.g., a password request for a user name of a Git account). The secure
storage queries an internal tree-like data structure to find the corresponding
node containing the secret. Next, the cache is queried for the secret value,
which can be in clear text (i.e., secret on flow 6 in Fig. 9.1(a)) or encrypted
(i.e., encr. data. on flow 7). If the value is in clear text, the secret is sent to
the plugin. In case of an encrypted value, a decrypt operation either fetches
the root password from the operating system or prompts the user to provide
it. Upon a successful decryption, the secret is sent to the plugin (flow 10 in
Fig. 9.1(a)). Though useful for performing architectural threat analysis [210],
we do not use trust boundaries in our work.

Security Extension. To capture security properties at the architectural
level, we use the Security Data Flow Diagram (SecDFD [248]). SecDFD is
a notation that enriches DFD with security concepts to enable a formally
grounded information flow analysis, focusing on the confidentiality and in-
tegrity of information assets. First, assets can be tagged with a high or low

9.2. BACKGROUND 183

(a) A DFD for Eclipse Secure Storage

(b) An excerpt of the SecDFD for Eclipse Secure Storage

Figure 9.1: A DFD (top) and an excerpt of the SecDFD (bottom) for Eclipse
Secure Storage

confidentiality label. Second, process nodes can be tagged with security con-
tracts that define how the security properties of assets change upon exiting the
node. The SecDFD defines four such contracts.

• Encrypt or Hash contract. The contract for encrypting input asset(s)
always results in propagating a low (public) label on the output flow(s).

• Decrypt contract. If the input asset is low decrypting it will result in
propagating a low label. However, if the input asset is high decrypting it
will result in propagating a high label on the output flow.

• Join contract. The contract for joining two or more assets propagates
the label equivalent to the most restrictive input asset. For example, if a
confidential asset is joined with a non-confidential assets the asset on the
output will be confidential.

• Forward or Copy contract. This contract will copy the labels of the
input asset(s) to the output flow(s) carrying the corresponding forwarded
asset(s).

Finally, the model elements can be grouped to attacker zones. An attacker
zone specifies the groups of elements which can be observed by an attacker of a
specific profile. The user can define a hierarchy of attacker zones with different
attacker profiles.

Fig. 9.1(b) shows an excerpt (for clarity) of the SecDFD for the Eclipse
Secure Storage example. If a plugin requires secret data that is cached encrypted,
the user must enter a password when prompted (c.f. pass. ext. in Fig. 9.1(b)).
The externally provided password is then used to decrypt the cached secret

184 CHAPTER 9. PAPERS H & I

Figure 9.2: Excerpt from the Program Model (PM) of the Eclipse Secure
Storage (shown as UML object diagram)

data, and if successful the plugin is allowed to read it. First, the designer must
specify that the external password is confidential. Second, the designer needs to
specify the process contract (e.g., for process Decrypt data). Since the external
password is confidential, it should not be leaked to other plugins running in
the environment. These simple extensions allow us to identify such behavior
in the model. For instance, the extended notation [248] is shipped with a
simple label propagation (using a dept-first search) according to the specified
process contracts. Once the labels have been propagated, a static check is
executed to determine if any confidential information flows to an attacker zone.
In Figure 9.1(b), the Plugin is not a malicious entity (i.e., it is not part of an
attacker zone). The developer can manipulate the elements of attacker zones
to change the design model and improve security.

The specified security properties can be also propagated from the SecDFD
to code using the mappings created by our approach. They can then be used
as input for code-level analysis tools, thus enabling compliance checks between
planned and implemented security properties (see Sect. 9.3.5). For the concrete
syntax and semantics of SecDFD we refer the reader to [248].

9.2.2 GRaViTY Program Model (PM)
To create a mapping between SecDFDs and their concrete implementation we
need an easy to analyze representation of the source code. Representations such
as abstract syntax trees (AST) contain every detail from the implementation,
which makes it hard to analyze for security purposes. Many details about
the implementation are not required for our approach. At the same time,
important information is not always directly accessible. For example, in
the source code files or an AST accesses of fields are not directly visible
as access edges between the source and the accessed field, but are access
statements within the source to some field with a given name. For our
approach, it is only important to know that there is an access to a specific

9.2. BACKGROUND 185

field from some source, but we do not need to know every detail about the
circumstances of this access. The Program Model, herein PM (proposed with
the GRaViTY -framework [13, 262, 263]) creates a more suitable abstraction
for security analysis and allows easy queries, which were very useful for our
approach. The GRaViTY -framework has been used for the evaluation and
execution of refactorings [263], for the detection of anti-patterns [264], as well
as for the automated design optimization of Java applications [265].

Fig. 9.2 shows an excerpt of the PM created by the GRaViTY -framework
for the Eclipse Secure Storage example. The figure shows two method
calls. The first call is from the method get(String, String), defined in
the class SecurePreferencesWrapper, to the method get(String, String,
SecurePreferenesContainer) of the class SecurePreferences. The second
call is from the called method of the first call to the method getPass-
word(String, IPreferencesContainer, boolean) which is defined in the
class SecurePreferencesRoot.

On top of the figure we can see the package structure of the program.
All packages without a parent can be taken as entry points for a search.
Additionally, it is possible to iterate over all types directly. The types (in
this case classes) are shown in the second row, each with a reference to the
members defined within the type. For the classes SecurePreferencesWrapper,
SecurePreferences, and SecurePreferencesRoot only a single method is
shown. Methods are represented by a triple of method name, method signature
and method definition. This allows an efficient search for specific methods,
starting with the method name, continuing with signatures, and finding concrete
definitions for them. Method signatures have parameters which have a reference
to the type representing the parameters type and a reference to the return
type. In the PM excerpt only the parameters of the signature get(String,
String):String are shown.

A benefit for our mapping from SecDFD to Java implementations is the
possibility of an iterative search, starting only with little knowledge about
the searched elements–e.g., a method name. The PM allows to start a search
with such little information and to find more concrete elements by considering
more information like method parameters without iterating over all method
definitions defined in the source code.

9.2.3 Compliance
Identifying the differences and equivalences between the planned and the im-
plemented software architecture is the goal of architecture compliance checking.
The compliance checks can be based on a static set of rules [266], dynamic
monitoring of a running system [267], or a hybrid of both [93]. In our work, we
statically check the compliance of design-level models to implementation-level
models. Running compliance checks reveals the relations between a set of
components of the first (design-level) model and a set of components of the
second (implementation-level) model. As outcome, three different types of
relations can be discovered.

Convergence. The compliance checks reveal an allowed relation between
the implemented components. Convergence indicates that the implementation
is compliant with the planned architecture. In the context of the mappings,

186 CHAPTER 9. PAPERS H & I

convergence means that the user has accepted a suggested mapping or has
manually defined a mapping. In the context of security properties, convergence
means that a planned security contract is implemented at the correct location
and no leaks have been detected by a data flow analyzer.

Divergence. The compliance checks reveal a relation between the imple-
mented components that is not allowed. In other words, the implementation
diverges and is therefore not compliant to the planned architecture. In this
work, divergence means that there are flows of assets in the implementation
which have not been defined in a DFD. We look for elements that relate to
existing mappings to find the relative parts of the implementation. In the
context of security properties, we identify divergence when (i) there exists
an implemented data flow which does not comply with the specified security
contracts of the process node, or (ii) the analysis with a state-of-the-art data
flow analyzer reports a leak of potentially confidential information.

Absence. The compliance checks reveal a relation between design-level
components that were not implemented. Absence indicates that the source code
is not compliant with the planned architecture due to a missing implementation.
In the context of the mappings, absence means that the user finished using our
approach, but there are still design-level elements that have not been mapped.
In the context of the security properties, absence means that the SecDFD
contracts have not been implemented.

9.2.4 Data Flow Analysis
Secure information flow analysis dates back to the 70s, and has been heavily
studied ever since [77, 268, 269]. In principle, the idea is to perform static
analysis of the program with the goal of showing that if executed, the program
does not leak confidential information. Data flow analysis computes the data
dependencies (i.e., which variables are dependent) to determine how data
propagates in the program. Data flow analyzers take as input an abstracted
representation of the code (e.g., abstract syntax tree, control flow graph) to
perform the analysis. Taint analysis is a kind of information flow analysis
where data objects are tainted at the source and tracked to the sink using
data flow analysis [269]. It is one of the most used data flow analyses and
has even been integrated to some programming languages (e.g., perlsec [270]).
Source methods are characterized by reading data from a system resource (e.g.,
remote database or user input) and returning them to the caller. Contrarily,
sink methods write to system resources. An alarm is raised if a tainted object
(i.e., source) flows into a forbidden location (i.e., sink) in the program.

9.3 Enabling Compliance Checks with Auto-
mated Mapping Generation

Assuming a correct DFD, the way it is implemented can vary depending
on concrete design (e.g., architectural patterns) and implementation specific
decisions (e.g., programming language). Therefore, a fully automatic generation
of a correct and complete mapping between DFDs and code is not feasible. Yet,
a manual specification of the same mapping is inefficient and error-prone. To

9.3. ENABLING COMPLIANCE CHECKS WITH AUTOMATED MAPPING GENERATION 187

3.1 – 3.2 Automated
Mapping of Elements

3.3 User Verification of
Mappings

3.4 Manual Mapping of
Elements

4.1 SecDFD Contract
Verification 4.2 Data Flow Analysis

Section 4

Section 3

Figure 9.3: Semi-automated mappings approach (Section 9.3) and security
compliance checks (Section 9.4)

this end, we propose an iterative technique for interactively guiding the user
in finding an adequate mapping by combining automated mappings with user
decisions as shown in Fig. 9.3. In step 1, mappings between DFD elements
and implementation elements are calculated using a heuristic technique. In
step 2, these mappings are presented to the user and manually checked by her.
In step 3, the user can manually map additional elements. Afterwards the
automated mapping is executed again, benefiting from the user input. This
process terminates when the user cannot find any additional mapping or finds
a violation. Next, the user can perform a security analysis of the SecDFD with
respect to the implementation (Section 9.4).

In this section we describe the steps of our technique in detail, including
the automated suggestions. In addition, we explain the use of these mappings
for compliance checks. In Section 9.3.1, we define the allowed correspondences
between DFD and PM element types. In Section 9.3.2, we show how our
automated technique in step 1 establishes concrete mappings between DFDs
and their implementations by means of a naming- and structure-based heuristics.
In Section 9.3.3 and 9.3.4, we explain the interactive steps 2 and 3 of our
technique. In Section 9.3.5 we argue how the created mappings can be used for
checking general compliance.

9.3.1 Corresponding Elements
As a prerequisite for mapping DFD elements to code elements, we have to
define which DFD element can correspond with which code elements.
Assets → types: The assets in a DFD are the elements holding critical data.
On the level of implementation, data is usually stored in fields, processed using
variables and transmitted using parameters and return values. A single asset
can be stored in many different locations at the same time which makes it
infeasible to map an asset to every single location. The only property of an
asset which only changes rarely in programs, written in an object-oriented
languages, is the asset type.
Data stores → types & methods: If we think about data stores like the
cache in Fig. 9.1(a) and 9.1(b), it is quite obvious that this could be a field
in some class. But it could also be implemented by an operation which, e.g.,
requests the cached values from an external server by creating HTTP requests.
The common trait between these two variants is the type used to store the data

188 CHAPTER 9. PAPERS H & I

dfd:Process pm:TMethodName
++

Constraint: equivalent(dfd.name, pm.tName)

Figure 9.4: Rule describing the name matching for methods

:Asset :TAbstractType

:Process :TMethodName

:TMethodSignature++:Flow

signatures

returnType

outFlows

assets

Figure 9.5: Rule for extending name matches based on return types

in. The field has a type which provides getters and setters for using the data
store, and the method used to get data from a remote server is implemented in
a type. Therefore, we map data stores to types as well as to the methods used
for accessing the stored data.
Processes → method(-names): Processes in DFDs describe functionalities
which process data, like methods in implementations do. Obviously, these two
elements correspond with each other. While a concrete method definition in an
implementation contains all details describing the functionality of this method,
the processes only have a name describing the functionality. We assume that a
developer implementing a process will chose a similar name for the methods
implementing this process. This leads us to a correspondence between the
names of processes and the names of methods.
Processes + Assets → method parameters: Between processes in a DFD,
data can be exchanged using flows, where the exchanged data are represented
by assets on the flows. In the methods implementing these processes the same
data have to be exchanged. Data between methods in implementations are
usually exchanged using parameters and return values. Therefore, we can
combine the name mappings between processes and methods with the assets
flowing into and out of a process to method parameters giving us the according
method signatures.

9.3.2 Semi-automated Mapping
In what follows we discuss the steps of our automatic generation of mappings
in detail.

The automated generation of mappings is based on name matchings and
structural heuristics, which are sequentially executed and complement each
other. For illustration, we formalize two of our mappings using graph rules,
using a notation inspired by algebraic graph transformation [271] (explained
below). The other mappings can be formalized in a similar way.

Name matching. First, the names of elements from a DFD are mapped
to the according names in the implementation. Asset and data store names
are mapped to the names of types and process names are mapped to the
names of methods. Fig. 9.4 shows a rule for mapping processes from a DFD to
method names from a PM. A correspondence (visualized as circle connecting

9.3. ENABLING COMPLIANCE CHECKS WITH AUTOMATED MAPPING GENERATION 189

the corresponding elements) between a process and a method name is created
(denoted by ++) if the constraint at the top of the rule holds. In this case the
names of the two elements on the left and right of the rule have to be equivalent.
The precise definition of this equivalence is described in what follows.

Names, both in a DFD and in a Java implementation, are usually build by
concatenating multiple words. For example, a Java method name getPassword
consists of the word get and password. These words can vary slightly in the
names of the corresponding DFD processes (e.g., in plural form, passwords
instead of password). In addition the style of word concatenation can differ. In
Java usually the camel case (getPassword) is used, whereas in DFDs this is
not a prescribed style, so underscores may also be used (Get Passwords).

To deal with these issues, we first split the strings at frequently used
delimiters and upper-case characters. This gives us for the example the sets
of words [get, Password] and [Get, Passwords]. Then we compare the lower-
case versions of the words with each other using a fuzzy compare based on
the Levenshtein distance [97]. The Levenshtein distance is a measure of the
minimal amount of characters which have to be removed, added or flipped to
change one word into the other one. For the given example this distance is
zero and one as the first word is already identical and only the character s has
to be added to change password into passwords. We accept different distances
between words for considering them as identical according to the length of
the words to be compared.

Finally, a DFD process is usually implemented in multiple methods,
typically having slightly more concrete names. For example besides the method
getPassword, there might also be an additional method internalGetPasswod
involved in the implementation of the process Get Passwords. But the DFD
process name might also contain additional information – e.g. the process
get Passwords External of the DFD in Fig. 9.1(a). To address this challenge,
we compare all words from the two names with each other and count the similar
words. If this number reaches an threshold of more than half the number of the
average words of the compared names, we consider the names sufficiently equal.

For the example DFD in Fig. 9.1(a) and the PM excerpt in Fig. 9.2 we get a
name match between the Get Value process and the two method names get and
getPassword as well as a match between the process Get Passwords External
and the method name getPassword. While two of this matches are expected,
the match between Get Value and getPassword is unexpected and should be
dropped in the following steps.

Extending name matches to method signatures. For every method
name, multiple signatures may exist. Even if our name matches were
always perfectly correct, this would not imply that all signatures with
this name are the ones corresponding to a given process. For exam-
ple, besides the relevant signature getPassword(String, IPreferences-
Container, boolean):PasswordExt, there might be a second signature get-
Password():char[] defined in the Java standard library which is never used
in the implementation. To identify the relevant signatures, we use data flow
information about assets flowing into and out of a process. Information flow-
ing into a process has to be passed to the implementation of the process,
for example, as a parameter value. Likewise, information leaving a process
can leave it over return values and parameters. Accordingly, we can use the

190 CHAPTER 9. PAPERS H & I

mapped assets to identify relevant signatures. For every signature, we count
how many mapped assets are compatible with the parameters and return types
of the existing signatures. If we have at least one match we consider this
signature for further mappings.

A rule for extending a process mapping based on an asset flowing out of a
process is shown in Fig. 9.5. On top of the rule we can see an existing mapping
between a process and a method name, as e.g. created by the rule shown in
Fig. 9.4. A mapping to one of the signatures having this name is created if
there is an mapping between an asset flowing out of the process and a type
which is the return type of the signature.

If we look at the return type of the signature get(String, String):String
and assume that the secret asset from Fig. 9.1(a) has been mapped to the
class java.lang.String we’ll accept this signature as corresponding with the
process Get Value. The other method name corresponding with this process
was getPassword. The return type of this method signature is PasswordExt
and also no parameter type is matching to an asset. Accordingly, we don’t
create a correspondence.

Finding implementations of signatures. The last step is to find con-
crete implementations of a signature corresponding with the process. For every
signature there might be several concrete implementations, all of which do
not necessarily correspond to the process. We make use of the flows between
different processes to find the concrete definitions.

If there is a flow from one process to another process, this does not only mean
that there has to be a signature which has the capability to return or receive
the according asset. There also has to be a definition of this signature which is
called from a definition in the other process. Therefore, we search for two kinds
of data flows between the concrete definitions of the signatures found before.

[A] Parameters passed by a call from the source of a flow to to the target of
the flow.

[B] Return values returned along a call from the target of a flow to the source
of the flow.

The flow between two such definitions is not necessarily a single direct call
between the two definitions. There can also be multiple definitions in between
forwarding data. For example we can see in Fig. 9.2 a call between the meth-
ods get(String, String, SecurePreferenesContainer):String and get-
Password(String, IPreferencesContainer, boolean):PasswordExt but
in the DFD in Fig. 9.1(a) there is no flow between the processes Get Value and
Get Passwords External, they have been mapped to. In the implementation
the get method forwards the return value of getPassword to a call of method
decrypt which has been mapped to the process Decrypt data. Matching this
intermediate to one of the two involved processes is non-trivial. However, if
we found such a flow, we can definitely assume that we found two definitions
implementing at least parts of the two processes.

The intermediate definitions can be partly mapped to one of the two
processes by considering the internal coupling in a process. For every pair
of signatures mapped to the same process, we look for pairs of definitions
calling each other. For example, this is the case for the definition of the
signature internalGetPassword, which is called by getPassword(String,
IPreferencesContainer, boolean):PasswordExt.

9.3. ENABLING COMPLIANCE CHECKS WITH AUTOMATED MAPPING GENERATION 191

Cleanup. After matching assets and processes we have to decide which
matches are most likely to be correct and, therefore, should be presented to the
user. For that reason, we introduce a certainty score for our mappings. This
score is calculated with respect to the quality of the underlying name matching
as well as the coupling of matched elements with other matched elements. For
every DFD element we only present mappings whose score is higher or equal
to the median score of all mappings for this element.

The mappings sorted out in this step are not presented to the user, but may
be discovered later again in the interactive process – based on future matches,
which might have a coupling to the elements that are now discarded.

9.3.3 User Verification of Mappings
The mappings created in the previous step are now presented to and verified
by the user. For every asset-, data store-type and process-definition mapping
the user can preform three actions.
Accept: The user can accept the mapping. From then, the mapping cannot be
discarded by the optimization step of the automated mapping approach any-
more, and all mappings coupled to this mapping obtain a higher certainty score.
Reject: The user can reject the mapping. From then, this mapping is never
presented to the user again and it is not considered anymore for extending it to
other mappings. All other mappings to which the rejected mapping has been
extended will be removed, too, but might be presented to the user again.
Tolerate: The user can choose to ignore some suggested mappings. Mappings
that are not explicitly accepted or rejected are suggested again and can be
re-assessed in future iterations.

Mappings accepted or rejected by the user allow the heuristic to automat-
ically discard related mappings that have only been found by following up
the rejected mapping. This is how the search space is reduced in the next
automated iteration. Conversely, manually accepting mappings can lead to
the score of related mappings being increased and, for this reason, allow to
propose new mappings which haven not been considered as correct ones before.
Anyhow, a limitation of our heuristic is that they cannot detect mappings
which are outside of the search space created by the initial name mappings.
We are overcoming this limitation in our approach by including user feedback
as described in what follows.

9.3.4 Manual Mapping of Elements
To increase the search space, an additional user step is conducted after the
user manually verified the automatically created mappings (or at least a part
of them). In this step, the user has to add at least one new mapping to give
additional input to the automated mapping algorithm. The selection of this
manually mapped element can have a large impact on the efficiency of the
following automated steps.

9.3.5 Compliance of Models and Code
The mappings can be used to perform compliance checks. In what follows we
describe the check developed to determine if the implementation corresponds

192 CHAPTER 9. PAPERS H & I

with the specification in the DFD.
The correspondence checks take place while the mappings are created.

Using the proposed approach, we check for the three kinds of correspondences
introduced in Section 9.2.3:
Convergence. All DFD elements which have been mapped to implementation
elements and have not been rejected are allowed to be mapped. Following the
definition of convergence, the convergences between the DFDs and the code
are described by the set of all allowed mappings.
Divergence. Elements present in the code, but not specified in the DFD
represent a divergence between the DFD and code. To help the user discovering
divergences, it is possible to show all flows from members mapped to one process
to other members not mapped to this process. If the target of such a flow has not
been mapped to any process, there seems to be a divergence. But, a divergence
also arises if there is a flow between two processes in the code that has not been
specified on the DFD. If an critical asset is communicated along such a flow
this is not only a divergence from the intended design but a security violation.
Absence. If we are neither able to map a DFD element to the code automati-
cally and the user is not able to map the same element when asked, we discover
an absence of specified functionality in the code. Assuming correctness of DFD
models, we only have to consider this one direction of absence (concerning the
opposite direction, see divergence).

Using these checks, a developer or code reviewer can detect a compliance
issue between an DFD and the implementation at hand. However, regarding
security, these checks are not precise enough: They might not reveal flows of
confidential assets into parts of the program that are not supposed to take
place – e.g., if a developer uses a full representation of an object, instead of a
stripped one. To this end, we can perform more sophisticated security checks,
as described in what follows.

9.4 Security Compliance with Static Program
Analysis

After the user creates the mappings using our approach (Section 9.3.5), she can
use them to verify the security of the implemented systems. Besides precise
security checks that are addressed in the main part of this section, the created
mappings can also be used to address security on an organizational level.

One approach to achieve a secure system is to structure it into different
security levels where only some parts have to be maintained by security experts,
e.g., this kind of structure can be used to isolate subjects for manual security
code reviews. Unfortunately, such a structure also might erode and increase
the effort required for maintaining security [272]. To detect such an erosion
security metrics have been defined [273, 274]. These metrics (as many other
security checks) need information about security critical parts of the system,
therefore their application is often not possible.

In what follows, we demonstrate how we can transfer security related
information from the design-time security models to the implementation using
the created mappings. As example, we use the Critical Design Proportion
metric, specifying the ratio between security critical and not security critical

9.4. SECURITY COMPLIANCE WITH STATIC PROGRAM ANALYSIS 193

classes [274]. To calculate this metric, we have to classify all classes as security
critical or not security critical. Even though the assets are mapped to types,
they do not necessarily represent security critical classes, e.g., the class String
is used to represent both secret assets but also other data. We can derive
the security critical classes from the mapping by first identifying the security
critical methods and afterward the classes defining these methods. These are
exactly all methods mapped to a process in the SecDFD that is processing
an asset tagged as confidential.

While security metrics can make security maintenance controllable and
demonstrate how the information in the SecDFD can be leveraged, they do not
allow to actively detect and prevent security violations. For this reason, the
main part of this work rather focuses on automating a security analysis of the
SecDFD with respect to the implementation (see Fig. 9.3). First, the developer
can automatically verify if the specified SecDFD contracts are implemented.
Second, she can automatically extract project-specific sources and sinks and
perform a data flow analysis. The provided feedback of compliance violations
and potential leaks may cause her to revisit the implementation, and reflect
the changes in the SecDFD. First, we discuss the verification of the specified
SecDFD contracts in the implementation. Second, we reveal how using our
approach helps in reducing false alarms raised by data flow analysis.

9.4.1 Verification of Specified SecDFD Contracts
We developed static checks to verify the compliance of the implementation
to the SecDFD encrypt, decrypt, forward, and join contracts. We assume
an existing mapping between the SecDFD and the implementation before
executing the checks.

Encrypt and Decrypt contracts. When executed, all encrypt and
decrypt process contracts will be checked against the implementation. For
each process with such a contract, we collect all the mapped method
implementations that call at least one method signature performing an encrypt
or decrypt operation. If at least one such method implementation exists, we
consider that the process contract has been implemented, and mark it as
convergence. If no such method implementation has been mapped to this
process, we consider that the process contract has not been implemented, and
mark this occurrence as absence.

We provide a list of well known methods that are called during cryptographic
operations. We compiled this list by inspecting the Java standard security
library, and packaged it together with the plugin. In addition, the user is able to
add project-specific methods to this list (at runtime) via the user interface. We
remark that state-of-the-art static analysis tools (e.g., SonarCube1) maintain
similar rules for checking implemented encryption logic, but with our approach
users can verify their expectation regarding the planned security.

Forward and Join contracts. The forward and join contracts at the
SecDFD level describe local data flows within a process that have to be present in
the implementation. To check if the specified contracts have been implemented,
we propose a two-step procedure introduced in what follows. First, we extract
the relevant asset-communicating flows from the implementation (i-flows).

1https://www.sonarqube.org

https://www.sonarqube.org

194 CHAPTER 9. PAPERS H & I

Second, we compare the implemented flows with the expected flows specified
in the SecDFD (d-flows).

The main challenges in checking forward and join contracts are that one
process can be realized by multiple methods but there are also many methods
that do not belong to any process but interact with multiple processes. Fur-
thermore, an asset in the SecDFD can be realized by different types in the
implementation. For example, the encrypted data (encr. data) in Fig. 9.1(b) is
realized by instances of the Java classes String and CryptoData. In addition,
a single type in the implementation can be used to create instances of different
assets. This is especially a problem for frequently used types like strings that
can be used to represent nearly every asset as shown before.

In Algorithm 2, we show the pseudo code for the extraction of the imple-
mented flows (i-flows) for a given process. We define an i-flow as a pair of the
target of the i-flow and a set of the sources of the i-flow. The inputs to this
algorithm are the process for which we want to extract the implemented flows
and the mapping described in Section 9.3.1.

First, we retrieve the methods implementing the process from the mapping.
For each method, we search for the relevant incoming and outgoing flows in the
implementation. To this aim, we implement operations inFlows and outFlows
which collect all flows into the parameters of the methods and all incoming or
outgoing return flows. Next, we filter the collected flows in lines 3–8 and 10–14.
For the forward and join check only the flows that can be used to communicate
assets from the SecDFD are relevant. This means that the type communicated
along a data flow has to be mapped to an asset. Accordingly, we filter out the
flows which communicate unmapped types. At this point it is not important
which assets can be communicated along the single data flow.

After filtering, for every outgoing flow we perform a backward search in line
18 and check in line 19 if we found reachable incoming flows (sources). The
pair of the found sources and the target represent one i-flow, that is added
to the result set i. If exactly one incoming data flow is propagated to the
outgoing data flow, we found an implemented forward, and if multiple incoming
data flows are propagated to an outgoing data flow, we found an implemented
join. Note that we only consider patterns with one outgoing flow. If there are
contracts in the DFD with multiple outgoing flows, they have to be split into
multiple contracts. Finally, we return all found i-flows.

After we extracted the i-flows, we compare them to the expectations from
the SecDFD using Algorithm 3. The input to this algorithm are the process, the
mapping, and the extracted i-flows. The output is a set of identified violations
(absence and divergence).

The algorithm is again based on two steps. First, we collect all possible
matches between the i-flows and the expected flows from the SecDFD contracts
(d-flows). We consider the implementation of a contract to be convergent with
the SecDFD if and only if there exists a bidirectional one-to-one mapping
between the d-flow of the contract and an i-flow. We call this property a
biunique mapping. But, the matches are usually not biunique because of the
overlapping asset type mappings, therefore we have to reduce the initial set of
matches to a set of biunique mappings in the second step.

To collect the matches we iterate over every contract and every outgoing
asset of the contract in lines 2 and 5. For each of these pairs we select i-flows if

9.4. SECURITY COMPLIANCE WITH STATIC PROGRAM ANALYSIS 195

Input : Process p, Mapping m
Output : I-Flows i

1 methods ← m.methods(p)
2 in ← inFlows(methods)
3 foreach flow ∈ in do
4 type ← communicatedType(flow)
5 if m.mapping(type) = ∅ then
6 remove flow from in
7 end
8 end
9 out ← outFlows(methods)

10 foreach flow ∈ out do
11 type ← communicatedType(flow)
12 if m.mapping(type) = ∅ then
13 remove flow from out
14 end
15 end
16 i ← {}
17 foreach target ∈ out do
18 sources ← reachableBwd(target, out)
19 if sources 6= ∅ then
20 add (sources,target) to i
21 end
22 end
23 return i
Algorithm 2: Algorithm for the Extraction of the I-Flows i for a given
Process p

196 CHAPTER 9. PAPERS H & I

Input : I-Flows i, Process p, Mapping m
Output : Violations v

1 v ← {}
2 matches ← {}
3 foreach contract ∈ fwdJoinContracts(p) do
4 inAssets ← contract.inAssets()
5 foreach outAsset ∈ contract.outAssets() do
6 flows ← {}
7 foreach iflow ∈ i do
8 type ← communicatedType(iflow.trg())
9 if outAsset ∈ m.mapping(type) and ∀ s ∈ iflow.src() :

(m.mapping(communicatedType(s)) ∩ inAssets) 6= ∅ then
10 add iflow to flows
11 end
12 end
13 if flows = ∅ then
14 add ”Absence: Not implemented” to v
15 end
16 add (contract, outAsset)→flows to matches
17 end
18 end
19 solution ← findSolution(matches)
20 if solution = ∅ then
21 add ”Divergence: No biuniqe assignment” to v
22 else
23 foreach flow ∈ (matches \ solution.flows()) do
24 add ”Divergence: Not in DFD” to v
25 end
26 end
27 return v
Algorithm 3: Algorithm Checking the Implemented Flows i for a given
Process p against the Specified Contracts

9.4. SECURITY COMPLIANCE WITH STATIC PROGRAM ANALYSIS 197

their possible outgoing assets contain the expected asset and if for every incom-
ing flow at least one possible asset is contained in the set of expected incoming
assets (see line 9 in Algorithm 3). If no such i-flow exists, the contract is not im-
plemented (for this outgoing asset) and we detect a divergence (lines 13 and 14).

After collecting all possible matches, we have to find a biunique solution
within the created mappings between the d-flows and the i-flows. This is imple-
mented in the function findSolution. The easiest implementation is to iteratively
assign i-flows to d-flows and to check if a solution is still possible. If so, we can
assign the next i-flow to a d-flow, else, we have to backtrack. If we cannot find
such a solution, we report a violation as there is at least one not implemented
contract and we detected an absence (lines 20 and 21). If we found a solution,
all specified contracts have been implemented and we found a convergence. How-
ever, all i-flows that are not part of the solution are still reported as violation
as they are unspecified forwards or joins of assets and represent a divergence.

9.4.2 Optimized Data Flow Analysis
To perform a data flow analysis, the developer needs to identify the sources
and sinks of secret data in the implementation. More importantly, to perform
a meaningful and precise data flow analysis, the sources and sinks must
be identified correctly. For instance, we have found the standard substring
method in Java (java.lang.String.substring(int, int):String) as one
of the sink method signatures in an existing list of identified sinks.2 This will
result in many false alarms raised by the analyzer, since it seems unlikely
that data can leave the system through this method and it is a very common
operation over strings in Java. Dually, overlooking an important source
may result in overlooking true leaks. Though some sources and sinks can be
extracted from library APIs [79], finding project-specific sources still remains
a challenge. In addition, many data flow analyzers work with a flat security
policy. Specifically, they raise an alarm if there is an access path between any
of the source methods and any of the sink methods. But, certain tainted data
might be expected to flow to some sinks (e.g., writing an encrypted password
to local storage) but not others. If all the tainted objects are treated equally,
the analyzer raises false alarms. In response to this challenge, we aim to
automatically extract project-specific sources and sinks for each SecDFD asset.

Project-specific sources. The SecDFD requires the user to specify confi-
dential assets, thus their source element (in the model) can easily be determined.
There are three possible types of source elements: an external entity, a data
base, or a process. If the asset source is an external entity and it is mapped to
method definitions, their signatures are collected as sources. But, if a mapping
of the external entity does not exist (e.g., for the entity Plugin from Fig. 9.1(a)
and 9.1(b)), the signatures of the mapped method definitions of the processes
reading from that entity are collected instead. If the asset source is a data
store, it can be mapped to methods or types. First, the signatures of method
definitions mapped to the data store (if any) are collected. Second, if the data
store is mapped to a type (e.g., a Class), the signatures of method definitions
defined by this class are also collected, but only if the return type matches the
asset type. Finally, an asset source can be a process element (e.g., a random

2https://github.com/secure-software-engineering/SuSi

https://github.com/secure-software-engineering/SuSi

198 CHAPTER 9. PAPERS H & I

number generator). If there is no process contract with this particular asset
on the output, then the signatures of the method definitions mapped to the
process are collected. But, the asset may originate in the process as a result
of a transformation (e.g., a join of two assets). In this case, the assets on the
contract inputs are traced backwards reaching either an external entity, a data
store, or a process with no contracts impacting the traced asset. The signatures
of the method definitions mapped to the traced element are collected as sources.

Allowed sinks. We collect the sink method signatures from [79] (excluding
methods of Android specific packages) and exclude the allowed sinks. The
allowed sinks are maintained for each confidential asset. These are method
implementations mapped to SecDFD elements where the confidential asset
exits the system (i.e., external entities and data stores). For example, the
secret flowing into the Plugin (data flow 10 in Fig. 9.1(b)) is expected to flow
there. Therefore, we consider the Plugin as an allowed sink. However, since
the Plugin can not be mapped to the implementation, we instead consider the
method implementations mapped to the Decrypt data process as allowed sinks.

Attacker zones. The SecDFD allows the user to specify attacker zones,
which denote what elements are observable by the attacker. For each asset, we
collect signatures of all the method definitions mapped to elements of attacker
zones and add them to the list of sinks and (if needed) remove them from the
allowed sinks. In this way, the user is able to influence the security policy of
the SecDFD, and perform an analysis assuming over-exposed components or
APIs. This kind of what-if analysis can be useful to identify the impact of a
security mitigation on the design level.

9.5 Tool Support
In this section we give a quick overview of the implemented tool and describe
how to work with the tool using the provided user interface. We show how
to create a mapping between a SecDFDs and its implementation and how to
verify the implementation for security compliance with the SecDFD.

9.5.1 Implementation
The approach is implemented and packaged as a publicly available Eclipse
plugin [275]. The architecture of our implementation is shown in Fig. 9.6.
Reused components and external libraries are shown in dark gray. Components
developed for [257] and adapted as part of this work are shown in light gray.
Entirely new components are shown in white. Our implementation is structured
according to the two main contributions of this work. First, we have the semi-
automated creation of mappings realized in the component Mapping, and second,
the security compliance checks realized in the SecurityChecks component.

Semi-automated mappings. For the creation of mapping suggestions we
implemented the name matches and the patterns shown in Section 9.3 in hand
written-java code. The implementation leverages an existing implementation
for modeling SecDFDs using an Xtext DSL with editor support [248]. Also,
we use an existing plugin for generating the Program Model from Java source
code [13]. The SecDFD and the PM are accessed through the Java APIs
provided by the components realizing the models.

9.5. TOOL SUPPORT 199

Figure 9.6: Architecture of the implementation

Using the Eclipse API, an integration into the Java source code editor is
provided. For working with the SecDFD the textual editor is provided by the
SecDFD component. In addition, we provide a graphical Editor based on the Sir-
ius framework.3 For showing the proposed mappings to the user, we registered
a view in the Eclipse IDE. As a single system is usually described in multiple
SecDFDs, we extended the implementation of this view to support multiple
SecDFDs at the time. Details on how the user interacts with our implementa-
tion are presented in Section 9.5.2. Created mappings can be accessed through a
wizard that shows all SecDFDs within a project as well as all existing mappings.

Access to the mappings is provided to other components though a Mapping
interface, e.g., for the verification of SecDFD contracts. This interface allows
to query the mappings in both directions, for mappings to a given SecDFD
element and mappings to PM elements for a single or multiple SecDFDs.

Security checks. The implementation of the security compliance
checks is following the structure of Section 9.4 and is separated into two
components. One component for performing optimized data flow analyses
(DataFlow) and one for the verification of the contracts specified in a SecDFD
(ContractVerification).

In this work, we perform the data flow analysis using FlowDroid [96], a
state-of-the-art taint analyzer for Android applications, but also applicable to
Java programs. The 2.7.1 release of FlowDroid was obtained from [276] and is
imported as a library in our plugin.

FlowDroid raises an alarm if and only if an object flows from a predefined
list of source methods (i.e., these objects are tainted) into sink methods (i.e.,
they violate the security policy). The sources and sinks must be identified and
are passed as parameters to the analyzer. To simply the analysis, FlowDroid
relies on capabilities of the Soot compiler framework [277] which converts Java

3https://www.eclipse.org/sirius/

200 CHAPTER 9. PAPERS H & I

bytecode into the Jimple [278] intermediate code representation. This makes the
analysis in FlowDroid precise as it is flow-sensitive (the call graph is aware of the
order of statements) and context-sensitive (the call graph is enriched with the
context of the callees). In addition, the Jimple representation is able to handle
Java reflection, but only for reflective calls where the types of all referenced
classes are known. The analysis in FlowDroid is also object-sensitive (i.e., the
call graph distinguishes method invocations on different object instances) since
it uses access paths as taint abstractions. In general, taint analyzers consider
only explicit flows for performance reasons [279], but FlowDroid also supports
tracking implicit flows and shows high performance results on benchmarks (86%
precision and 93% recall on DroidBench [96]). We refer the interested reader
to [280] for more details. The DataFlow component of our implementation
executes FlowDroid over its Java API. Following Section 9.4.2, we execute
FlowDroid for every asset in the SecDFD taking its set of allowed sinks and
possible sources into account.

The contract verification is again split into two sub-components. One for the
verification of the forward and join contracts (ProcessingContracts) and one
for the verification of the encrypt and decrypt contracts (CryptoContracts). In
both sub-components we implemented the checks as introduced in Section 9.4.1
using hand-written Java code.

9.5.2 Using the Tool
The target audience of the tool are software developers with training in the
principles of software architecture. After the installation of the required
packages, the program is started as a running Eclipse instance. First, the
developers import the desired Java project. Second, they manually create one
or several SecDFDs for representing the high-level architecture and security
properties of the project. They can do so with a textual or graphical syntax
(one can be generated from the other). Fig. 9.7 shows screenshots of the user
interface after this step is completed. On the left hand side of the figures, users
can see the Package Explorer. The top two windows are used for displaying
the source code (left) and the SecDFD (right). The bottom windows are used
for displaying and defining the mappings. Next, using context menu entries,
the developers trigger the automated generation of a PM from the source code,
and start the first iteration of the semi-automated process for mapping the
SecDFD elements to source code elements (see Sect. 9.3).

At the start of each iteration, the developers are shown a list of suggested
mappings. Since one DFD element is usually mapped to several program
elements, the results are grouped by the DFD elements. For each DFD element,
the list of mapped PM elements is shown, each with its path in the source
code. The developers can interact with the tool by accepting, rejecting, and
manually defining mappings. A suggested mapping is accepted or rejected with
a right-click on the entry and selecting accept or reject, respectively. Once a
mapping is accepted, corresponding in-line markers are created on the SecDFD
and in the source code. Double-clicking a mapping will open the correct source
file and navigate to the correct line in the file. Accepted mappings can always
be rejected. If all the suggested mappings are correct, the developers can
select accept all. Rejected mappings will never be suggested again. Manual

9.5. TOOL SUPPORT 201

(a) UI with the textual syntax

(b) UI with the graphical syntax

Figure 9.7: Screenshots of the UI in Eclipse

202 CHAPTER 9. PAPERS H & I

Table 9.1: Projects considered in the evaluation

source code DFD

project lloc classes methods elements

jpetstore 1,221 17 277 47
ATM simulation 2,290 57 225 85
Eclipse Secure Storage 2,900 39 330 41
CoCoME 4,786 120 512 44
iTrust 28,133 423 3,691 31

definition works by right-clicking and selecting Map Selection to SecDFD on
source code elements. At the end of the iteration, developers can either stop
or select continue to trigger a new search refining the present mapping.

Finally, the developers can execute security compliance checks by pressing
a button. The contract violations and leaks identified by FlowDroid are
presented to the user with error and warning markers on the SecDFD model.
At any moment, the developers can extend the list of project-specific methods
signatures for cryptographic operations, and execute the checks again. Similar
to manual definition, they can right-click the source code elements and select
the appropriate menu item.

9.6 Evaluation
The evaluation of our approach has three parts. First, we conducted an
experiment to evaluate the automated mapping creation (Section 9.6.1). Next,
we conducted experiments to evaluate the verification of SecDFD contracts in
implementation (Section 9.6.2), and the optimization of data flow analysis by
extracting project-specific sources and sinks from SecDFDs (Section 9.6.3).

Table 9.1 depicts the characteristics of five open source Java projects used
in our studies.

Jpetstore [281]. This is a web application built on top of MyBatis 3,
Spring and the Stripes Framework. This is an example with very few classes,
implementing the basic functionalities of a web store. In principle, the users
are able to create their accounts, browse, and order goods online. Jpetstore
has been designed as minimal demonstration application for MyBatis, which
should have a good design and documentation. The developers tried to strictly
follow the MVC pattern.

ATM simulation [282]. This is a simulation for an ATM machine developed
for academic purposes. The ATM simulation implements the main procedure
of a control system. Upon start-up a new session is initiated, and the users
are able to insert their card and PIN number. The session continues upon
a correct PIN entry, and provides the users with the option of a withdrawal,
deposit, balance inquiry, and money transfer. After a completion of desired
transactions, the ATM returns the card and optionally prints the receipt.

Eclipse Secure Storage [258]. As described in Section 9.2, Eclipse Secure
Storage is used for ensuring secure storage and management of sensitive data
within the developer’s Eclipse workspace. The secure storage allows for plugins
to authenticate and have controlled access to workspace resources.

CoCoME [283]. CoCoMe is a platform for collaborative empirical research

9.6. EVALUATION 203

on information system evolution [284]. This platform helps engineers manage
different aspect of software evolution, such as the system life-cycle, versioning
artifacts, and comprehensive evolution scenarios. The implemented system
is a cash register.

iTrust [285]. This example is a web application for hospitals which allows
the hospital’s staff to manage medical records of patients, based on 55 use
cases. The example originally stems from a course project, has been maintained
by the Realsearch research group at North Carolina State University, and
was used as an evaluation example in research papers before [286]. Detailed
requirements describing different activities are available [285]. However, the
available requirements and use cases mostly describe very simple tasks and
only a few of them are realized in the implementation.

9.6.1 Evaluation of Mappings
The purpose of this study was to evaluate the correctness of the suggested
mappings. In what follows, we briefly describe the design of the experiment,
the projects, and the results.

Design of study. We conduct this experiment with all five open source
projects from Table 9.1. To evaluate the correctness of the suggested mappings,
we set up an experiment to compare a ground truth of manually created
mappings with the generated mappings for each of the five considered projects.
The iterative approach involves the user to guide the generation of mappings in
the desired direction. As per this design choice, we intentionally investigate the
correctness of the automated mappings and the impact of the user separately.
Consequently, the evaluation aims to answer the following research questions.

RQ1. What is the correctness of the automated mappings generated by the
plugin? We measured correctness in terms of precision and recall (dependent
variables). Conventionally, precision (TP/(TP + FP)) is measured as a ratio
between the true positives (i.e., correct mappings) and all generated mappings
(including the false mappings). A true positive TP is a correct mapping
between the source code and the DFD element which is listed in the ground
truth. A false positive FP is a mapping between the source code and DFD
element that is not listed in the ground truth. Recall (TP/(TP + FN))
is measured as a ratio between the true positives and all correct mappings
(including the overlooked mappings). A false negative FN is a mapping
between the source code and the SecDFD element which is present in the
ground truth, but has not been identified.

RQ2. What is the impact of the user on the correctness of mappings? The
implementation automatically derives trivial mappings from the user defined
mappings, raising the recall before a new iteration starts. Therefore, the impact
of the user defined mappings is measured as the difference in recall before, and
after the added mappings.

Execution. The experiment was executed by the first and second author.
The authors worked on the projects individually and compared their results at
each step. First, the authors created the SecDFDs for all five projects models
manually. To this aim, the authors inspected all available documentation
(including the source code) and reverse engineered a high-level architecture.
Second, a ground truth was created for each SecDFD by following the execution

204 CHAPTER 9. PAPERS H & I

Table 9.2: Results of the mapping after each iteration

automated manual

project it. precision[%] recall[%] accept+u (
∑

) reject recall[%](∆)

jpetstore 1 56.1 51.1 23 + 3 (26) 18 57.8 (+6.7)
2 96.4 60.0 1 + 3 (30) 1 66.7 (+6.7)
3 96.8 66.7 0 + 5 (35) 1 77.8 (+11.1)
4 97.4 82.2 2 + 3 (40) 1 88.9 (+6.7)
5 100 93.3 2 + 3 (45) 0 100 (+6.7)

ATM 1 72.0 40.0 18 + 3 (21) 7 46.7 (+6.7)
simulation 2 67.6 51.1 2 + 5 (28) 11 62.2 (+11.1)

3 70.5 68.9 3 + 5 (36) 11 80.0 (+11.1)
4 76.6 80 0 + 4 (40) 13 88.9 (+8.9)
5 95.5 93.3 2 + 3 (45) 2 100 (+6.7)

Eclipse 1 73.0 90.5 40 + 1 (41) 14 92.9 (+2.4)
sec. storage 2 67.7 100 1 + 0 (42) 12 —

CoCoME 1 27.9 77.3 17 + 1 (18) 44 81.8 (+4.5)
2 86.4 90.5 1 + 1 (20) 2 90.9 (+0.4)
3 90.9 83.3 0 + 2 (22) 4 100 (+16.7)

iTrust 1 23.5 80.0 8 + 1 (9) 26 90.0 (+10.0)
2 81.8 90.0 0 + 1 (10) 2 100 (+10.0)

of the modeled scenarios and manually mapping the executed methods and
transferred data to the processes and assets of the according step. The ground
truth is a JSON file with a list of correspondence mappings between the
elements of the SecDFD and a uniquely identifiable location of the source
code element. Third, the implemented plugin was used to find the automated
mappings in several iterations. Each iteration included accepting, rejecting the
automated mappings, and defining mappings manually by highlighting elements
in the source code and specifying the corresponding SecDFD elements. After
each iteration the precision and recall of the automated mappings were logged.

Results. This study shows promising results for guiding the user in the
discovery of compliance violations. In particular, Table 9.2 shows measurements
of high precision and recall only after a few iterations for realistic Java projects.
Each iteration consists of an automated, and a manual (user input) phase. We
present the precision and recall for the automatically suggested mappings in
each iteration. We also depict the amount of manually accepted, user defined,
the sum of all accepted and user defined, rejected mappings, and the impact
of the user defined mappings on recall (in that order). Notice that the later
iterations make use of the manually defined mappings.

RQ1. We start by reporting the correctness of the automated mappings
in the first iteration. The average precision of the first iteration is 50.5%. On
average, the recall of the first iteration is 69.8%. Yet, both the precision and
the recall increase after the first iteration. On average, the final precision and
recall of the automated phase are very good (87.2% and 92%, respectively).

The average difference between the recall of the second iteration and the
the user-impacted recall of the first iteration (last column in Table 9.2) is 4.5%.
This means that on average, the automated search was able to increase the recall
between the first and second iteration by 4.5%. On the other hand, the average

9.6. EVALUATION 205

difference between the user-impacted recall of the second iteration and the recall
of the third iteration is minimal. This means that, the automated search was not
able to increase the recall significantly between the second and third iteration.

RQ2. On average, the user accepted less (7) mappings then they re-
jected (9.6), and defined only 2.6 mappings manually. However, in three cases
(jpetstore, ATM simulation, Eclipse Secure Storage) the user accepted more
mappings then rejected. This means that the user could quickly scan the
suggested mappings and eliminate the ones that are obviously wrong. Overall,
adding a few mappings manually resulted in a more fruitful next iteration. For
instance, adding three mappings manually in the first iteration of evaluating the
ATM simulation resulted in two new correct mappings (see accepted mappings
of the second iteration).

On average, the user impact on the recall was an increase of 7.9%. This
means that the users were indeed able to guide the discovery of compliance
violations. Further, the users had a larger impact on increasing the recall in
later iterations compared to the automated search (7.9% vs 4.5%). Notice, that
on average 75% of all correct mappings (TP) are suggested to the user and do
not have to be manually defined.

9.6.2 Evaluation of the SecDFD Contract Verification
In this section, we evaluate if the proposed contract checks (Section 9.4.1) can
effectively detect convergence, absence and divergence between the planned
security properties and the implemented security mechanisms.

Design of study. In this part of the evaluation, we focus on the
effectiveness of the SecDFD contract verification to answer the following
research question.

RQ1. How effective is the proposed approach in the verification of contracts?
It is important to evaluate if the proposed checks can effectively be used in
the context of realistic projects. To this aim, we have used open source Java
projects, as opposed to illustrative projects. Further, as we are interested in
the effectiveness of the proposed compliance checks, we execute the evaluation
for all process contracts, encrypt, decrypt, forward, and join. We evaluate
the approach with perfectly compliant SecDFDs (i.e., verification results only
include convergences, and there are no absence or divergence violations) and
with SecDFDs with injected process contracts. In case of the fully compliant
SecDFDs, all the detected compliance violations are false positives (FPs).
Injecting the process contracts allows us to measure expected compliance
violations (e.g., an absence of a join contract), which we mark as true positives
(TPs). If the expected compliance violation is not found (according to the
injected contract), we mark it as a false negative (FN). Finally, if we find
unexpected compliance violations we mark them as false positives (FPs). As
a term of measure, we adopt the well-understood precision (TP/(TP + FP))
and recall (TP/(TP + FN)) of detected compliance violations.

Execution. As subjects of this evaluation we use two subjects from
the introduced test corpus, the Eclipse secure storage and iTrust. For both
projects, we created one additional SecDFD. In what follows, we refer to the
new SecDFDs as Eclipse 2 and iTrust 2. The two SecDFDs created for the
study in Section 9.6.1 are Eclipse 1 and iTrust 1. As the created SecDFDs

206 CHAPTER 9. PAPERS H & I

(all four) have been reverse engineered from the implementations, these are
perfectly compliant.

First, we apply the contract verification to the two projects. We expect to
detect no divergences or absences between the SecDFD and the implementation.

Afterward, we inject violations into the systems and check if these are
detected. The violations are injected by adding random contracts to the
SecDFDs that are not implemented. After every injection, we execute the
contract verification and check if the expected violation has been detected, if
additional false alarms have been raised, or if expected convergences are not
detected any longer. We generate injections of all contract types (encrypt,
decrypt, forward, and join). Regardless of the contract type, we inject all
possible contracts that have not been specified on the initial SecDFD.

New encrypt and decrypt contracts can be injected independently of each
other. An encrypt contract can be injected to every process that has no
encrypt contract in the initial SecDFD and a decrypt contract to every process
that has no decrypt contract. Accordingly, it can happen that we inject a
decrypt contract to a process that has already an encrypt contract and the
other way around.

For the injection of forward and join contracts, we inject for every process
of a SecDFD all possible contracts that are not already specified. To do so,
we calculate all possible combinations with one outgoing flow. To calculate
the combinations we consider all incoming and outgoing assets. For instance,
for a process with two incoming and two outgoing assets (and no specified
forward, or join contract), we inject 6 possible contracts. Every incoming asset
can be forwarded to every outgoing asset (4 forward contracts) and the pair
of incoming assets can be joined with both outgoing assets as target (2 join
contracts). If a combination is equivalent to an existing contract, it is omitted.

Results. The results of the evaluation are in favor of using our approach
to execute security compliance checks between design and implementation.

For the execution of the verification on the fully compliant SecDFDs, we
achieved 100% precision and recall. But, the effectiveness of the proposed
contracts must also be studied in the context of imperfectly mapped SecDFDs.
In what follows, we discuss the effectiveness of the approach in detecting
absences of specified contracts. Tables 9.3 and 9.4 depict the results of the
contract verification based on the injected contracts. We show the results per
SecDFD and overall.

For evaluating the verification of encrypt and decrypt contracts, we injected
200 additional encrypt and decrypt contracts into the SecDFDs. Most injected
contracts (except 11) were correctly detected as absent. The 11 undetected
absent contracts belong to the same SecDFD (of the iTrust project). After
investigating them, we noticed that all of them have been injected into processes
that already have a encrypt or decrypt contract. The reason for this defect is
that the project-specific specified signature (in the list of well-known crypto-
graphic operations) for encryption is also specified for decryption. As iTrust
uses a crypto-function on which a parameter is used for specifying whether a
encryption or decryption should be performed, this is a correct classification.
Since, we only check for at least one method call for encrypt/decrypt, we can
not detect an absence in this particular case.

To evaluate the forward and join checks we injected 232 contracts into the

9.6. EVALUATION 207

SecDFDs. In contrast to the cryptographic contracts verification, the results
presented in Table 9.4 paint a more diverse picture. On the one hand, the pro-
cessing contracts verification reaches a very good precision (98.21% and 87.01%)
and recall (70.51% and 82.71%) on the iTrust project. On the other, the verifica-
tion performs below par on the Eclipse secure storage project. In addition, there
is a huge difference between the two SecDFDs on the Eclipse secure storage.

In particular, the verification did not work for the SecDFD shown in
Fig. 9.1(b) (Eclipse 1). There are two reasons for this poor performance.

First, external entities are not part of the system and can not be mapped
to elements from the system. For example, the external entity Plugin in
Fig. 9.1(b) represents an arbitrary plugin installed into the Eclipse instance
that is unknown to the Eclipse secure storage. This arbitrary plugin accesses
the secure storage using a Java API specified on implementation level. Similarly,
the data can be stored in a cloud, to which access is controlled via an API. In
such cases we attempt at guessing possible incoming flows by considering, e.g.,
every parameter of the methods mapped to a process as possible source but also
all returns of called methods that have not been mapped to any process. For
instance, the Get value process (Eclipse 1) is heavily interacting with an external
entity and data store which results in very many guesses weakening the results.

Second, despite the reduction when extracting flows (described in Sec-
tion 9.4.1), the overlapping asset types caused both FPs and FNs. In example,
this communication of Get value is implemented by mainly using assets whose
mappings are overlapping (mainly strings). In general, representing sensitive
objects with string values is prevalent in Eclipse secure storage. This also
effected the performance of the processing contracts verification on the second
SecDFD (Eclipse 2). Yet, the verification still achieves a recall and precision of
50%. This happened because the asset types of injected contracts overlapped
with the asset types of the implemented contracts. For instance, consider two
existing and fulfilled forwards of assets that are both mapped to the type String.
On Fig. 9.1(b) for instance, these are the forward of id on the Get value process
and the forward of the data to encr. data. 4 In addition to these expected
forwards, there are some additional uses of strings that are not representing
assets, e.g., a parameter representing a default value in the implementation
of the Get value process. Now we inject a join of id and data to encr. data..
As the default value is a guessed flow, we could easily ignore it before this
injection but now it exactly contributes to the injected join contract and we
have to report this contact as convergence. However, we cannot any longer
report the forward of data as convergence as the flow pattern is now mapped
to the injected join contract. Accordingly, we now report a false divergence. In
this case, at least the user would have been warned about a violation but the
information about the assets was not entirely correct.

As the iTrust project does not have as many overlapping asset-type mappings
and the SecDFDs have less external entities, the results are much better for
this subject. Again, the missed violations are mainly due to overlapping
asset mappings.

Overall, the contract verification is fairly precise (80%) and reaches the
recall of more than 65%. Generally, the contract verification works and is able to
bridge the huge gap between early design models and concrete implementations.

4Note that the Get value encrypts the data only if it is stored in plain, else it forwards it.

208 CHAPTER 9. PAPERS H & I

Table 9.3: Results of evaluating the cryptographic contracts verification

Eclipse iTrust

1 2 1 2 Overall

TPs 12 48 59 70 189
FPs 0 0 0 0 0
FNs 0 0 11 0 11

precision 100% 100% 100% 100% 100%
recall 100% 100% 84.28% 100% 94.5%

Table 9.4: Results of evaluating the processing contracts verification

Eclipse iTrust

1 2 1 2 Overall

TPs 1 29 55 67 152
FPs 0 28 1 10 39
FNs 14 29 23 14 80

precision 100% 50.88% 98.21% 87.01% 79.58%
recall 6.67% 50% 70.51% 82.71% 65.52%

Though, it suffers from overlapping mappings. Also, missing API specification
of the system (i.e., issue of mapping external entities), has a negative impact
on the performance of the contract verification.

9.6.3 Evaluation of Optimized Data Flow Analysis
The purpose of this study is to evaluate whether using our approach helps to
reduce the number of false alarms raised by an existing data flow analyzer.

Design of study. We investigate the performance of an analysis with
FlowDroid [96] initialized with project-specific sources and sinks. To this
aim, we built three configurations of sources and sinks. Apart from the
first configuration (Plain), we execute the analyzer for each SecDFD asset
separately. This experiment was conducted with two projects from Table 9.1,
namely, Eclipse Secure Storage [258] and iTrust [285]. To the best of our
knowledge, both projects are free of data flow leaks. Therefore, all the reported
leaks by the analyzer are by default labeled as false alarms (FPs). We pose
one research question.
RQ1. To what extent can the mapped design model (with our approach) be used
to reduce the number of false alarms raised by a data flow analyzer?

To answer the research question, we have set up three configurations of
sources and sinks.

Plain. We execute the analyzer with the list of source signatures shipped
with FlowDroid [79](herein Default sources) and sink signatures (herein
Default sinks). Apart from Java method signatures, this list contains
signatures of methods specific to Android source packages. We removed such
signatures to avoid unnecessarily searching for them with FlowDroid. Note, that
this reduced the list of source signatures from 18,077 to 1,229 and sink signatures
from 8,315 to 1,310. As a result of this filtering, the Android SQL database
API (SQLite) was also removed. To analyze Java projects, we manually added
signatures from the Java SQL API to the above list of sources and sinks.

9.6. EVALUATION 209

Partly Opt. We execute the analyzer (for each confidential asset) with
project-specific source signatures (herein SecDFD sources) and Default
sinks. The SecDFD sources are extracted per SecDFD asset, as described
in Section 9.4. Note that the SecDFD sources are extracted independently,
and therefore may not include any of the Default sources.

Fully Opt. We execute the analyzer (for each confidential asset) with
SecDFD sources and without allowed sink signatures (herein SecDFD
sinks). The list of allowed sink signatures is extracted per SecDFD asset, as
described in Section 9.4. The SecDFD sinks are obtained by removing the
allowed sink signatures from the Default sinks.

The results are compared in only terms of the number of FPs, as no actual
leaks (TPs) exist in the analyzed projects. In addition, we measure the number
of extracted project-specific source signatures, and the number of removed sink
signatures. A false alarm (FP) is a detected leak with a unique pair of source
and sink method signatures, regardless of the access path where the leak is
detected. The rationale for counting unique signature pairs is that comparing
access paths would be computationally expensive and not useful for the purpose
of this study. For instance, consider an implementation of a function where the
number of recursive calls depends on a conditional. In this case, at least two
access paths (when the conditional evaluates to true and false) are detected.
But the DFD does not specify such level of detail, thus we can not distinguish
between the access paths of the detected data leaks. The false alarms are
aggregated per SecDFD, to enable comparison with the Plain configuration.

As we execute the analysis for each SecDFD asset, we measure the project
specific sources and sinks in the same manner. Specifically, to measure the
number of project-specific sources we count each discovered source signature
per SecDFD asset. Similarly, to observe the number of times we are able to
remove an allowed sink, we count each signature which has been removed for a
unique asset.

Listing 9.1: Configuration of FlowDroid used in this study
Infoflow result = new Infoflow("", false, null);
result.setSootConfig((options, config) -> {
config.setCallgraphAlgorithm(CallgraphAlgorithm.AutomaticSelection);
config.setImplicitFlowMode(ImplicitFlowMode.AllImplicitFlows);
config.setAliasingAlgorithm(AliasingAlgorithm.FlowSensitive);
config.setStopAfterFirstKFlows(100);
});
result.setTaintWrapper(new EasyTaintWrapper(Collections.emptyMap()));
return result;

Execution. Both projects used in this study include two SecDFDs, repre-
senting two different scenarios. Listing 9.6.1 shows how we configured FlowDroid
for all our executions. This configuration was set-up to achieve the best perfor-
mance and most conservative analysis, in accordance with the literature [280].
We configure FlowDroid to use the default call-graph construction algorithm
(SPARK). In addition, we have enabled implicit flow tracking and flow-sensitive
aliasing. Note that, without tracking implicit flows, Fully Opt. produces
no false alarms, while Plain still reports many. Finally, we limit the static
analysis to the projects, excluding third-party libraries (line 11 in Listing 9.6.1),

210 CHAPTER 9. PAPERS H & I

Plain Partly Opt. Fully Opt.

E
clipse 1

E
clipse 2

iTrust 1
iTrust 2

FP FP FP

0

10

20

30

0

10

20

30

0

10

20

30

0

10

20

30

N
um

be
r

of
 R

ep
or

te
d

Le
ak

s

Figure 9.8: False alarms (FPs) raised by the analyzer after three configurations
of sources and sinks per SecDFD (Eclipse Secure Storage on top, iTrust on
bottom)

and stop the analyzer after identifying 100 leaks per run. We have implemented
and executed the experiments using the JUnit Plugin Test framework with a
limit of 6 GB of memory consumption (for each execution of the analyzer). The
amount of allowed memory and the maximum number of identified leaks were
determined empirically. We have executed random parts of the experiment
with different configurations repeatedly and didn’t get different results.

Results. Fig. 9.8 shows the false alarms raised by the analyzer after
three configurations per SecDFD model. The average number of false alarms
is aggregated per project in Table 9.5 and the change in the number of false
alarms is presented. The main takeaway of the evaluation is that using our
approach we were able to a) extract project-specific sources of secret data,
and b) reduce the number of false alarms (up to 62%) raised by the data flow

Table 9.5: Average false alarm reduction for the different configurations (aggre-
gated per project)

Configuration FPs on Eclipse FPs on iTrust Overall

Plain 15.65 2.7 9.18
Partly Opt. 9.45 (↓ 60%) 13.1 (↑ 485%) 11.28
Fully Opt. 5.95 (↓ 37%) 1.9 (↓ 85%) 3.93

Total (↓ 62%) (↓ 30%) (↓ 57%)

9.7. THREATS TO VALIDITY 211

analyzer. First we discuss the reduction with only project-specific sources.
Second we discuss the reduction with removing allowed sinks.

RQ1. Our measurements from the Partly Opt. configuration show
that deriving project-specific sources from the SecDFD is possible and can
reduce the number of FPs. For instance, in case of Secure Storage we achieved
an average 60% reduction of false alarms (Table 9.5). However, adding
project-specific sources can also lead to a rise in false alarms (as observed on
iTrust). The number of project-specific sources is realistic considering the
project size (e.i., 11 for Secure Storage and 10 for iTrust). In addition, the
project-specific source methods are in fact accessing sensitive resources (e.g.,
the org.eclipse.equinox.internal.security.storage. SecurePref-
erences.get(String, String, SecurePreferenceContainer):String is
called when fetching the cashed confidential credentials). But, the derived
sources depend heavily on the mappings. Since iTrust is implemented with the
dynamic Java Server Pages, FlowDroid can not analyze the entire behavior of
the program. Therefore, we are only able to reduce the number of FPs after
removing allowed sinks.

We found that the number of FPs can be further reduced by removing
allowed sinks from the list of sinks passed to the analyzer (Fully Opt. config-
uration). We have been able to remove 3 sinks (all from java.lang package)
for Eclipse Secure Storage and 36 sinks (all from java.sql package) for the
iTrust project. These sinks were included in the previous configurations, but
were derived in this configuration as allowed for certain SecDFD assets. In
particular, we observed a further 37% average reduction of FPs for the Eclipse
Secure Storage project, when comparing the analysis results to the previous
configuration (Partly Opt.).Compared to the first configuration (Plain),
considering only project-specific sources and removing allowed sinks reduced
the number of false alarms on average by 62%. As project-specific sources
were hard to find for the iTrust project, we compare the analysis results to the
initial configuration (Plain). Removing the allowed sinks in iTrust reduced
the number of FPs on average by 30%.

9.7 Threats to Validity
Our evaluation is subject to a number of threats.

The main threat to external validity is our selection of samples, based on
a limited number of open source projects, partially originating from a teaching
context. Regarding the validity of the studies conducted to evaluate the
security compliance checks, the open source projects do not contain well-known
data flow leaks, thus we consider them secure. The rationale for our selection
was the manual effort that was required for creating the ground truth of our
technique, a full mapping between high-level DFD elements and low-level
program elements. However, as a result, the generalizability of the results
to larger project in other domains is limited. To mitigate this threat, the
considered projects were chosen to be representative for realistic projects by
providing a good documentation, including architectural information (such
as, wikis, use cases, scenarios, requirements, state charts, and the like). The
available documentation enabled building good design models, close to the

212 CHAPTER 9. PAPERS H & I

intended architecture. Further, we partly mitigate this threat by experimenting
with contract injections as part of our evaluation. We plan to extend the
evaluation in the future to include a more comprehensive set of projects.

Regarding internal validity, the main threat of our evaluation is researcher
bias. In absence of pre-existing ground truths and design models, the ground
truth and design models for our evaluation were created manually by the
authors, possibly introducing a risk of creating a biased result. To mitigate this
threat, the ground truths and the design-level models were carefully discussed
between all authors. The created models and ground truths are of similar size
and complexity and are available online [275].

With respect to construct validity we consider the threat of misinterpreting
divergence, absence, and convergence compliance violations in the context of
design-level models, implementation-level models, and violations detected by
static code analysis. However, to the best of our knowledge, our interpretations
are in-line with the existing literature [93].

9.8 Related Work
First, we discuss two most related works with respect to security compliance
of DFDs, and leveraging specifications to optimize data flow analysis. Similar
to our work, these approaches are difficult to classify as forward or reverse
engineering solutions. Next, we position our work in the context of forward
and reverse engineering literature.

More than a decade ago, Abi-Antoun et al. [71] proposed conformance
checks between the implementation and DFDs. The authors automatically
extract a DFD (i.e., the source DFD) from the implementation. Next,
the user specifies a mapping (using Reflexion Models) between a manually
created high-level DFD and the source DFD, which is then used to uncover
inconsistencies. The notion of extracting the source DFD is similar to our
extraction of the implemented data flows. In contrast to the mappings with
Reflexion Models, our mappings are semi-automated using heuristics. Further,
the security analysis in [71] is performed on the level of the DFD, while our
security compliance checks are developed by means of static code analysis.
To the best of our knowledge, this work is the sole attempt at implementing
security compliance checks between the SecDFD and its implementation.

Recently, static code analysis techniques have been developed to assure
GDPR compliance of the implemented systems with respect to privacy
specifications [279, 287, 288]. Most relevant to our work, is the proposed
approach by Ferrara et al. [279] which uses the privacy policy to fine tune
and execute a taint analysis. The authors evaluate the approach by executing
a prototype analysis on a benchmark application. Deriving the sources and
sinks from the privacy policy is similar to our idea of maintaining allowed
sinks for each SecDFD asset. But, the required GDPR policy needs to be
specified on the level of implementation (e.g., concrete fields as sources, and
API method signatures for sinks). In contrast, our approach can derive
project-specific sources and allowed sinks from the design, and also performs
security compliance checks with respect to the design model.

UML models have been extensively studied in the context of forward

9.8. RELATED WORK 213

engineering solutions for checking security compliance.
Muntean et al. [64] extend the UML statecharts with security annotations

(such as source function, sink function, declassified parameter, etc.), generate
the source code in C, and implement static checks (using the Smtcodan engine)
to detect data flow violations. Similar to our work, the authors leverage
security information from the design to execute a static analysis, and lift the
detected violations back to the user (they display them with sequence diagrams).
However, compared to DFDs, the gap between statecharts and source code is
smaller (e.g., DFDs can not express conditional data flows, or sequence of data
flows). Further, our approach with correspondence mappings can be used on
existing projects (no code generation is necessary).

IFlow [65] is an approach for specifying and analyzing information flow
properties in distributed Java applications. The proposed approach extends the
UML model with information flow properties, and uses it to generate a Java
code skeleton, and transform it to a formal model supporting an interactive
theorem prover. The Java code skeleton (and manually completed program) can
be checked for standard information flow properties, such as non-interference,
using an existing framework (i.e., JOANA). Similar to this work, IFlow requires
the developer to provide the security information in the model, and leverages
an existing static analyzer. But, IFlow is model-driven and analyzes non-
interference in a more formal setting.

Fourneret et al. [62] combine model-based security analyses using
UMLsec [255] with the generation of security tests. Security properties are
specified and verified on UML state machines. These models are then used to
generate tests for the implemented system. In contrast to us the considered state
machines have to be very close to the implementation. Further, Ramadan et
al. [63] use model transformation to automatically generate security-annotated
UML class models [255] from security-annotated BPMN models.

For the classical reverse engineering scenario from source code to UML
class models, Peldszus et al. [289] propagate hand-crafted security annotations
from source code to the corresponding elements in automatically extracted
class models.

Scoria [66] is a semi-automated approach for extracting and analyzing the
Owner Object Graph annotated with security properties (i.e., SecGraph) to
find security flaws in the architecture. First, The SecGraph is extracted from a
manually annotated implementation. Second, software architects can optionally
refine the SecGraph with additional annotations. Finally, software architects
can design queries to analyze the SecGraph. Similar to our work, Scoria is
an iterative semi-automated approach analyzing security on abstracted code
representation. However, our work does not rely on code annotations, and
executes the security compliance checks by means of static analysis.

Jasser [70] recently proposed an approach for analyzing system behavior and
detecting its discordance with a set of useful security rules. The security rules
(modeled as Linear Time Logic (LTL) properties) are expressed with a controlled
natural language for describing architectural constraints. The system behavior
is extracted by means of dynamic analysis, using aspect-oriented programming.
Finally, before the security rules can be executed, the source-level elements
are manually mapped to the architectural elements. On a high-level, the idea
of our work relates Jassers approach, in that, an abstracted representation of

214 CHAPTER 9. PAPERS H & I

code is mapped to a higher-level model to analyze security compliance. In
comparison, our approach supports an automated discovery of such mapping,
and studies the compliance of static security properties in the implementation.

Manual security reviews can be aided by automated static (or hybrid)
program analysis. Static Application Security Testing (SAST) [290] tools aim
to analyze the program code of a software component and automatically report
the violations to developers, removing the need for security experts reviewing
large code bases. Our approach relates to such mechanisms in that it leverages
static code analysis to evaluate security of an implemented system. But, the
SAST analyzes security of the implementation, while our approach focuses on
analyzing the compliance of implemented security to the intended (designed)
security. Further, SAST tools need to still be configured by security experts,
whereas our approach automatically derives project-specific sources and sinks
from the SecDFD model.

Duarte et al. [291] propose to use context information of execution sequences
for the extraction of labeled transition system models from source code. While
the authors motivate their approach with the need for correspondence between
models and code, they only discuss the possibility to analyze the models using
existing tooling. The compliance checks introduced by Duarte et al. [291] are
performed similarly to the checks developed in this work. In contrast, our
approach supports compliance checks between models and code. Regarding
the preparation for compliance checks, Duarte et al. reverse engineer models
that can be checked or compared to existing models. In contrast, we recreate
a mapping between existing models and their implementation. This already
includes a comparison with the existing models.

Beyond the security scope of this work, conformance checking is generally
a well-studied topic in model-driven engineering. Paige et al. [292] use meta-
models as the common reference point to enable conformance checks between
diagrams representing different views on a system. Diskin et al. [293] present
a framework for global consistency checks of heterogeneous models based on
constraints. By supporting the explicit specification of overlaps between the
considered models, they avoid the need for a global meta-model. Expanding on
this work, König and Diskin [294] improve the efficiency of this approach by
supporting an early localization of relevant parts of the models whose consis-
tency is to be checked. Reder and Egyed [295] propose an efficient approach to
consistency checking based on predefined consistency rules. Estanol et al. [296]
developed an approach to check the conformance of process implementation to
UML and OCL models by translating them into petri-nets, and executing ex-
isting conformance checking techniques. However, none of these works address
security compliance checking between design and its implementation.

9.9 Conclusion and Future Work
This work has introduced a novel approach for tackling the problem of automat-
ing the code-level verification of planned security mechanisms. In particular, we
have developed a solution with tool support for executing security compliance
checks between an abstract design model (the SecDFD) and its implementation
(in Java). To this aim, we developed a user-in-the-loop approach for finding

9.9. CONCLUSION AND FUTURE WORK 215

corresponding elements based on heuristically computed suggestions. Once
defined, the correspondence mappings are leveraged for an automated security
analysis of the implementation against the design. First, two types of security
compliance checks are executed: a rule-based check for a set of cryptographic
operations, and a local data flow check for data processing contracts specified
in the model. Second, the mapped design is leveraged to initialize and execute
a state-of-the-art data flow analyzer over the entire Java project. The results
of the compliance checks (convergence, absence, and divergence) are lifted to
the attention of the user via the user interface of our tool.

Our approach was evaluated with three studies on open source Java projects,
focused on assessing the performance from different angles. First, our evaluation
has shown a high precision (87.2%) of the automated suggestions of mappings.
Second, the rule-based security compliance checks are very precise (100%) and
rarely overlook implemented cryptographic operations (recall is 94.5%). In
addition, the local data flow checks are fairly precise (79.6%), but may overlook
some implemented flows (recall is 65.6%), due to the large gap between the
design and implementation. Finally, our approach enables a project-specific
data flow analysis with up to 62% less false alarms.

Regarding future improvements, we note that extending the SecDFD with
strongly typed assets could improve the performance of the security compliance
checks. Strongly typed SecDFD assets could be mapped to the implementation
more precisely, which would make the local data flow checks cleaner. In addition,
the missing mappings to the external entities could be better approximated by
relying on parsed API specifications (e.g, JavaDoc). Finally, the evaluation of
the security checks could be improved by including more open source projects,
especially projects with well-known data leaks.

216 CHAPTER 9. PAPERS H & I

Bibliography

[1] C. Y. Jeong, S.-Y. T. Lee, and J.-H. Lim, “Information security breaches
and it security investments: Impacts on competitors,” Information &
Management, vol. 56, no. 5, pp. 681–695, 2019.

[2] “UK’s ICO fines British Airways a record £183M over
GDPR breach that leaked data from 500,000 users,”
https://techcrunch.com/2019/07/08/uks-ico-fines-british-airways-
a-record-183m-over-gdpr-breach-that-leaked-data-from-500000-users/,
accessed: 2020-11-18.

[3] “Report: Data Breach in Biometric Security Platform Affecting Mil-
lions of Users,” https://www.vpnmentor.com/blog/report-biostar2-leak/,
accessed: 2020-11-18.

[4] “Report: Estimated 24,000 Android apps expose user data through
Firebase blunders,” https://www.comparitech.com/blog/information-
security/firebase-misconfiguration-report/, accessed: 2020-11-18.

[5] G. McGraw, Software security: building security in. Addison-Wesley
Professional, 2006, vol. 1.

[6] N. Daswani, C. Kern, and A. Kesavan, “Secure design principles,” Foun-
dations of Security: What Every Programmer Needs to Know, pp. 61–76,
2007.

[7] C. Dougherty, K. Sayre, R. C. Seacord, D. Svoboda, and K. Togashi, “Se-
cure Design Patterns,” Carnegie-Mellon University Pittsburgh, Software
Engineering Institute, Tech. Rep., 2009.

[8] S. Migues, J. Steven, and M. Ware, “Building security in maturity model
11 (BSIMM11),” https://www.bsimm.com, accessed: 2020-10-29.

[9] A. Shostack, Threat Modeling: Designing for Security. John Wiley &
Sons, 2014.

[10] R. Scandariato, K. Wuyts, and W. Joosen, “A descriptive study of
microsoft’s threat modeling technique,” Requirements Engineering, vol. 20,
no. 2, pp. 163–180, 2015.

[11] M. Deng, K. Wuyts, R. Scandariato, B. Preneel, and W. Joosen, “A pri-
vacy threat analysis framework: supporting the elicitation and fulfillment
of privacy requirements,” Requirements Engineering, vol. 16, no. 1, pp.
3–32, 2011.

[12] R. Hebig, T. H. Quang, M. R. Chaudron, G. Robles, and M. A. Fernandez,
“The Quest for Open Source Projects that Use UML: Mining GitHub,” in
Proceedings of the International Conference on Model Driven Engineering
Languages and Systems (MODELS). ACM, 2016, pp. 173–183.

[13] S. Peldszus et al., “GRaViTY Program Model,” 2020. [Online]. Available:

217

https://www.bsimm.com

218 BIBLIOGRAPHY

http://gravity-tool.org
[14] G. Macher, E. Armengaud, E. Brenner, and C. Kreiner, “A review of

threat analysis and risk assessment methods in the automotive context,”
in Proceedings of the International Conference on Computer Safety, Reli-
ability, and Security. Springer, 2016, pp. 130–141.

[15] K. Bernsmed and M. G. Jaatun, “Threat modelling and agile software
development: Identified practice in four norwegian organisations,” in Pro-
ceedings of the International Conference on Cyber Security and Protection
of Digital Services (Cyber Security). IEEE, 2019, pp. 1–8.

[16] M. N. Anwar, M. Nazir, and A. M. Ansari, “Modeling security threats for
smart cities: A stride-based approach,” in Smart Cities—Opportunities
and Challenges. Springer, 2020, pp. 387–396.

[17] J. Lee, S. Kang, and S. Kim, “Study on the smart speaker security evalu-
ations and countermeasures,” in Advanced Multimedia and Ubiquitous
Engineering. Springer, 2019, pp. 50–70.

[18] C. Paule, T. F. Düllmann, and A. Van Hoorn, “Vulnerabilities in continu-
ous delivery pipelines? a case study,” in Proceedings of the International
Conference on Software Architecture Companion (ICSA-C). IEEE, 2019,
pp. 102–108.

[19] J. Sanfilippo, T. Abegaz, B. Payne, and A. Salimi, “Stride-based threat
modeling for mysql databases,” in Proceedings of the Future Technologies
Conference. Springer, 2019, pp. 368–378.

[20] R. Khan, K. McLaughlin, D. Laverty, and S. Sezer, “Stride-based threat
modeling for cyber-physical systems,” in Proceedings of the PES Innova-
tive Smart Grid Technologies Conference Europe (ISGT-Europe). IEEE,
2017, pp. 1–6.

[21] M. Abomhara, M. Gerdes, and G. M. Køien, “A stride-based threat
model for telehealth systems,” NISK Journal, pp. 82–96, 2015.

[22] M. V. Dumitru, D. Dumitrescu, and C. Raiciu, “Can we exploit buggy
p4 programs?” in Proceedings of the Symposium on SDN Research, 2020,
pp. 62–68.

[23] M. A. Naagas and T. D. Palaoag, “A threat-driven approach to modeling a
campus network security,” in Proceedings of the International Conference
on Communications and Broadband Networking, 2018, pp. 6–12.

[24] D. Magin, R. Khondoker, and K. Bayarou, “Security analysis of openradio
and softran with stride framework,” in Proceedings of the International
Conference on Computer Communications and Applications (ICCCN),
vol. 38, 2015.

[25] M. S. Lund, B. Solhaug, and K. Stølen, Model-driven risk analysis: the
CORAS approach. Springer Science & Business Media, 2010.

[26] C. Alberts, A. Dorofee, J. Stevens, and C. Woody, “Introduction to the
octave approach,” Pittsburgh, PA, Carnegie Mellon University, Tech.
Rep., 2003.

[27] ——, “Octave-s implementation guide, version 1.0,” Carnegie-Mellon
Univ Pittsburgh PA Software Engineering Inst, Tech. Rep., 2005.

[28] R. A. Caralli, J. F. Stevens, L. R. Young, and W. R. Wilson, “Introduc-
ing octave allegro: Improving the information security risk assessment
process,” Carnegie-Mellon Univ Pittsburgh PA Software Engineering Inst,
Tech. Rep., 2007.

http://gravity-tool.org

BIBLIOGRAPHY 219

[29] T. UcedaVelez and M. M. Morana, Risk Centric Threat Modeling: Process
for Attack Simulation and Threat Analysis. John Wiley & Sons, 2015.

[30] K. Buyens, B. De Win, and W. Joosen, “Empirical and statistical analysis
of risk analysis-driven techniques for threat management,” in Proceedings
of the International Conference on Availability, Reliability and Security
(ARES). IEEE, 2007, pp. 1034–1041.

[31] J. Selin, “Evaluation of threat modeling methodologies,” Master’s thesis,
JAMK University of Applied Sciences, https://www.theseus.fi/bitstrea
m/handle/10024/220967/Selin Juuso.pdf?isAllowed=y&sequence=2, 5
2019.

[32] D. Verdon and G. McGraw, “Risk analysis in software design,” IEEE
Security & Privacy Magazine, vol. 2, no. 4, pp. 79–84, 2004.

[33] D. S. Cruzes, M. G. Jaatun, K. Bernsmed, and I. A. Tøndel, “Challenges
and experiences with applying microsoft threat modeling in agile develop-
ment projects,” in Proceedings of the Australasian Software Engineering
Conference (ASWEC). IEEE, 2018, pp. 111–120.

[34] S. Mauw and M. Oostdijk, “Foundations of attack trees,” in Proceedings
of the International Conference on Information Security and Cryptology,
vol. 3935. Springer, 2005, pp. 186–198.

[35] G. Sindre and A. L. Opdahl, “Eliciting security requirements with misuse
cases,” Requirements Engineering, vol. 10, no. 1, pp. 34–44, 2005.

[36] K. Beckers, D. Hatebur, and M. Heisel, “A problem-based threat analysis
in compliance with common criteria,” in Proceedings of the International
Conference on Availability, Reliability and Security (ARES). IEEE, 2013,
pp. 111–120.

[37] D. Hatebur and M. Heisel, “Problem frames and architectures for security
problems,” in Proceedings of the International Conference on Computer
Safety, Reliability, and Security (SAFECOMP). Springer, 2005, pp.
390–404.

[38] L. Lin, B. Nuseibeh, D. Ince, and M. Jackson, “Using abuse frames to
bound the scope of security problems,” in Proceedings of the International
Conference on Requirements Engineering (RE). IEEE, 2004, pp. 354–355.

[39] B. Schneier, “Attack trees,” Dr Dobb’s Journal, v.24, n.12, 1999.
[40] H. S. Lallie, K. Debattista, and J. Bal, “A review of attack graph and

attack tree visual syntax in cyber security,” Computer Science Review,
vol. 35, p. 100219, 2020.

[41] “Sustainable Application Security microsofts new threat model-
ing tool,” https://blog.secodis.com/2016/07/06/microsofts-new-threat-
modeling-tool/, accessed: 2017-05-15.

[42] L. Sion, D. Van Landuyt, K. Yskout, and W. Joosen, “Sparta: Security
& privacy architecture through risk-driven threat assessment,” in Pro-
ceedings of the International Conference on Software Architecture (ICSA).
IEEE, 2018.

[43] S. Seifermann, R. Heinrich, and R. Reussner, “Data-driven software archi-
tecture for analyzing confidentiality,” in Proceedings of the International
Conference on Software Architecture (ICSA). IEEE, 2019, pp. 1–10.

[44] M. Almorsy, J. Grundy, and A. S. Ibrahim, “Automated software archi-
tecture security risk analysis using formalized signatures,” in Proceedings
of the International Conference on Software Engineering (ICSE). IEEE

https://www.theseus.fi/bitstream/handle/10024/220967/Selin_Juuso.pdf?isAllowed=y&sequence=2
https://www.theseus.fi/bitstream/handle/10024/220967/Selin_Juuso.pdf?isAllowed=y&sequence=2

220 BIBLIOGRAPHY

Press, 2013, pp. 662–671.
[45] B. J. Berger, K. Sohr, and R. Koschke, “Automatically extracting threats

from extended data flow diagrams,” in Proceedings of the International
Symposium on Engineering Secure Software and Systems. Springer,
2016, pp. 56–71.

[46] J. B. Hong, D. S. Kim, C.-J. Chung, and D. Huang, “A survey on
the usability and practical applications of graphical security models,”
Computer Science Review, vol. 26, pp. 1–16, 2017.

[47] O. Sheyner, J. Haines, S. Jha, R. Lippmann, and J. M. Wing, “Auto-
mated generation and analysis of attack graphs,” in Proceedings of the
Symposium on Security and Privacy. IEEE, 2002, pp. 273–284.

[48] X. Ou, W. F. Boyer, and M. A. McQueen, “A scalable approach to attack
graph generation,” in Proceedings of the Conference on Computer and
Communications Security. ACM, 2006, pp. 336–345.

[49] D. Xu and K. E. Nygard, “Threat-driven modeling and verification of
secure software using aspect-oriented petri nets,” IEEE Transactions on
Software Engineering, vol. 32, no. 4, pp. 265–278, 2006.

[50] C. Gerking and D. Schubert, “Component-based refinement and verifica-
tion of information-flow security policies for cyber-physical microservice
architectures,” in Proceedings of the International Conference on Software
Architecture (ICSA). IEEE, 2019, pp. 61–70.

[51] G. T. Leavens, T. Wahls, and A. L. Baker, “Formal semantics for sa
style data flow diagram specification languages,” in Proceedings of the
1999 ACM Symposium on Applied Computing, ser. SAC ’99, 1999, pp.
526–532.

[52] P. G. Larsen, N. Plat, and H. Toetenel, “A formal semantics of data flow
diagrams,” Form. Asp. Comput., vol. 6, no. 6, pp. 586–606, Dec. 1994.

[53] A. van den Berghe, R. Scandariato, K. Yskout, and W. Joosen, “Design
notations for secure software: a systematic literature review,” Software
& Systems Modeling, pp. 1–23, 2015.

[54] P. H. Nguyen, M. Kramer, J. Klein, and Y. Le Traon, “An extensive
systematic review on the model-driven development of secure systems,”
Information and Software Technology, vol. 68, pp. 62–81, 2015.

[55] C. Raibulet, F. A. Fontana, and M. Zanoni, “Model-driven reverse engi-
neering approaches: A systematic literature review,” IEEE Access, vol. 5,
pp. 14 516–14 542, 2017.

[56] N. Anquetil, U. Kulesza, R. Mitschke, A. Moreira, J.-C. Royer, A. Rumm-
ler, and A. Sousa, “A model-driven traceability framework for software
product lines,” Software & Systems Modeling, vol. 9, no. 4, pp. 427–451,
2010.

[57] J. Jürjens, “Umlsec: Extending uml for secure systems development,”
in Proceedings of the International Conference on The Unified Modeling
Language. Springer, 2002, pp. 412–425.

[58] ——, “Model-based security testing using umlsec: A case study,” Elec-
tronic Notes in Theoretical Computer Science, vol. 220, no. 1, pp. 93–104,
2008.

[59] B. Best, J. Jurjens, and B. Nuseibeh, “Model-based security engineering
of distributed information systems using umlsec,” in Proceedings of
the International Conference on Software Engineering (ICSE). IEEE

BIBLIOGRAPHY 221

Computer Society, 2007, pp. 581–590.
[60] J. Jürjens, “Using umlsec and goal trees for secure systems development,”

in Proceedings of the Symposium on Applied Computing. ACM, 2002,
pp. 1026–1030.

[61] J. Jürjens and P. Shabalin, “Tools for secure systems development with
uml,” International Journal on Software Tools for Technology Transfer,
vol. 9, no. 5-6, pp. 527–544, 2007.

[62] E. Fourneret, M. Ochoa, F. Bouquet, J. Botella, J. Jurjens, and P. Yousefi,
“Model-Based Security Verification and Testing for Smart-cards,” in Pro-
ceedings of the International Conference on Availability, Reliability and
Security (ARES). IEEE, 2011, pp. 272–279.

[63] Q. Ramadan, M. Salnitri, D. Strüber, J. Jürjens, and P. Giorgini, “From
Secure Business Process Modeling to Design-Level Security Verification,”
in Proceedings of the International Conference on Model Driven Engi-
neering Languages and Systems (MODELS). ACM/IEEE, 2017, pp.
123–133.

[64] P. Muntean, A. Rabbi, A. Ibing, and C. Eckert, “Automated Detection
of Information Flow Vulnerabilities in UML State Charts and C Code,”
in Proceedings of the International Conference on Software Quality, Reli-
ability and Security-Companion (QRS-C). IEEE, 2015, pp. 128–137.

[65] K. Katkalov, K. Stenzel, M. Borek, and W. Reif, “Model-driven devel-
opment of information flow-secure systems with iflow,” in Proceedings
of the International Conference on Social Computing. IEEE, 2013, pp.
51–56.

[66] R. Vanciu and M. Abi-Antoun, “Finding Architectural Flaws using Con-
straints,” in Proceedings of the International Conference on Automated
Software Engineering (ASE). IEEE, 2013, pp. 334–344.

[67] J. Aldrich, C. Chambers, and D. Notkin, “Archjava: connecting software
architecture to implementation,” in Proceedings of the International
Conference on Software Engineering (ICSE). IEEE, 2002, pp. 187–197.

[68] P. Olson and M. Randevik, “Secarchunit: Extending archunit to support
validation of security architectural constraints,” Master’s thesis, Chalmers
University of Technology, https://masterthesis.cms.chalmers.se/content
/secarchunit-extending-archunit-support-validation-security-architectu
ral-constraints, 4 2020.

[69] Z. Yu, C. Bai, L. Seinturier, and M. Monperrus, “Characterizing the
usage, evolution and impact of java annotations in practice,” IEEE
Transactions on Software Engineering, 2019.

[70] S. Jasser, “Enforcing Architectural Security Decisions,” in Proceedings of
the International Conference on Software Architecture (ICSA). IEEE,
2020, pp. 35–45.

[71] M. Abi-Antoun, D. Wang, and P. Torr, “Checking threat modeling
data flow diagrams for implementation conformance and security,” in
Proceedings of the IEEE/ACM International Conference on Automated
Software Engineering (ASE). ACM, 2007, pp. 393–396.

[72] G. C. Murphy, D. Notkin, and K. Sullivan, “Software reflexion models:
Bridging the gap between source and high-level models,” in Proceedings
of the Symposium on Foundations of Software Engineering. ACM, 1995,
pp. 18–28.

https://masterthesis.cms.chalmers.se/content/secarchunit-extending-archunit-support-validation-security-architectural-constraints
https://masterthesis.cms.chalmers.se/content/secarchunit-extending-archunit-support-validation-security-architectural-constraints
https://masterthesis.cms.chalmers.se/content/secarchunit-extending-archunit-support-validation-security-architectural-constraints

222 BIBLIOGRAPHY

[73] S. Charalampidou, A. Ampatzoglou, E. Karountzos, and P. Avgeriou,
“Empirical studies on software traceability: A mapping study,” Journal
of Software: Evolution and Process, p. e2294, 2020.

[74] A. Velasco and J. Aponte, “Automated fine grained traceability links re-
covery between high level requirements and source code implementations,”
ParadigmPlus, vol. 1, no. 2, pp. 18–41, 2020.

[75] A. Act, “Health insurance portability and accountability act of 1996,”
Public law, vol. 104, p. 191, 1996.

[76] B. Dit, M. Revelle, M. Gethers, and D. Poshyvanyk, “Feature Location in
Source Code: A Taxonomy and Survey,” Journal of Software: Evolution
and Process, vol. 25, no. 1, pp. 53–95, 2013.

[77] A. Sabelfeld and A. C. Myers, “Language-based information-flow security,”
IEEE Journal on Selected Areas in Communications, vol. 21, no. 1, pp.
5–19, 2003.

[78] D. E. Denning and P. J. Denning, “Certification of programs for secure
information flow,” Communications of the ACM, vol. 20, no. 7, pp. 504–
513, 1977.

[79] S. Arzt, S. Rasthofer, and E. Bodden, “SuSi: A Tool for the Fully
Automated Classification and Categorization of Android Sources and
Sinks,” University of Darmstadt, Tech. Rep. TUDCS-2013-0114, 2013.

[80] B. Kitchenham, S. Charters, D. Budgen, P. Brereton, M. Turner,
S. Linkman, M. Jørgensen, E. Mendes, and G. Visaggio, “Guidelines
for performing systematic literature reviews in software engineering,” in
Technical report, Ver. 2.3 EBSE Technical Report. EBSE. sn, 2007.

[81] C. Wohlin, “Guidelines for snowballing in systematic literature studies
and a replication in software engineering,” in Proceedings of the Interna-
tional Conference on Evaluation and Assessment in Software Engineering.
ACM, 2014, p. 38.

[82] S. Easterbrook, J. Singer, M.-A. Storey, and D. Damian, “Selecting em-
pirical methods for software engineering research,” in Guide to Advanced
Empirical Software Engineering. Springer, 2008, pp. 285–311.

[83] D. H. Jonassen, “Toward a design theory of problem solving,” Educational
technology research and development, vol. 48, no. 4, pp. 63–85, 2000.

[84] A. A. A. Jilani, A. Nadeem, T. hoon Kim, and E. suk Cho, “Formal
representations of the data flow diagram: A survey,” in Proceedings of
the Advanced Software Engineering and Its Applications (ASEA), 2008.

[85] D. M. Volpano and G. Smith, “A type-based approach to program
security,” in Proceedings of the International Joint Conference Theory
and Practice of Software Development, 1997, pp. 607–621.

[86] A. Sabelfeld and D. Sands, “Declassification: Dimensions and principles.”
JCS, 2009.

[87] “CVE - Common Vulnerabilities and Exposures,” Available from MITRE,
2020. [Online]. Available: https://cve.mitre.org

[88] “CWE - Common Weakness Enumeration,” Available from MITRE,
2020. [Online]. Available: https://cwe.mitre.org

[89] S. Barnum, “Common attack pattern enumeration and classification
(capec) schema description,” Cigital Inc, http://capec. mitre. org/docu-
ments/documentation/CAPEC Schema Descr iption v1, vol. 3, 2008.

[90] B. J. Berger, K. Sohr, and R. Koschke, “Extracting and analyzing the im-

https://cve.mitre.org
https://cwe.mitre.org

BIBLIOGRAPHY 223

plemented security architecture of business applications,” in Proceedings
of the European Conference on Software Maintenance and Reengineering
(CSMR). IEEE, 2013, pp. 285–294.

[91] B. Hoisl, S. Sobernig, and M. Strembeck, “Modeling and enforcing secure
object flows in process-driven soas: an integrated model-driven approach,”
Software & Systems Modeling, vol. 13, no. 2, pp. 513–548, 2014.

[92] M. Frydman, G. Ruiz, E. Heymann, E. César, and B. P. Miller, “Au-
tomating risk analysis of software design models,” The Scientific World
Journal, vol. 2014, pp. 248–259, 2014.

[93] L. De Silva and D. Balasubramaniam, “Controlling software architecture
erosion: A survey,” Journal of Systems and Software, vol. 85, no. 1, pp.
132–151, 2012.

[94] K. Goseva-Popstojanova and A. Perhinschi, “On the Capability of Static
Code Analysis to Detect Security Vulnerabilities,” Information and Soft-
ware Technology (IST), vol. 68, pp. 18–33, 2015.

[95] D. Baca, K. Petersen, B. Carlsson, and L. Lundberg, “Static Code
Analysis to Detect Software Security Vulnerabilities-does Experience
Matter?” in Proceedings of the International Conference on Availability,
Reliability and Security (ARES). IEEE, 2009, pp. 804–810.

[96] S. Arzt, S. Rasthofer, C. Fritz, E. Bodden, A. Bartel, J. Klein, Y. Le Traon,
D. Octeau, and P. McDaniel, “Flowdroid: Precise context, flow, field,
object-sensitive and lifecycle-aware taint analysis for android apps,” ACM
Sigplan Notices, vol. 49, no. 6, pp. 259–269, 2014.

[97] V. I. Levenshtein, “Binary Codes Capable of Correcting Deletions, Inser-
tions, and Reversals,” Soviet Physics Doklady, vol. 10, no. 8, pp. 707–710,
1966.

[98] T. Antignac, R. Scandariato, and G. Schneider, “Privacy compliance
via model transformations,” in Proceedings of the European Symposium
on Security and Privacy Workshops (EuroS&PW). IEEE, 2018, pp.
120–126.

[99] “MS Windows NT kernel description,” Node-RED: Low-code program-
ming for event-driven applications, accessed: 2020-11-19.

[100] Z. Li, P. Liang, and P. Avgeriou, “Architectural technical debt identifica-
tion based on architecture decisions and change scenarios,” in Proceedings
of the Working Conference on Software Architecture (WICSA). IEEE,
2015, pp. 65–74.

[101] “Bsimm7,” https://go.bsimm.com/hubfs/BSIMM/BSIMM7.pdf, (Ac-
cessed on 12/08/2017).

[102] J. Whittle, D. Wijesekera, and M. Hartong, “Executable misuse cases
for modeling security concerns,” in Proceedings of the International
Conference on Software Engineering (ICSE). IEEE, 2008, pp. 121–130.

[103] C. Raspotnig and A. Opdahl, “Comparing risk identification techniques
for safety and security requirements,” Journal of Systems and Software,
vol. 86, no. 4, pp. 1124–1151, 2013.

[104] C. Y. C. Cheung, “Threat modeling techniques,” Faculty of Technology,
Policy and Management, Delft University of Technology, Tech. Rep.,
Nov. 2016. [Online]. Available: http://www.safety-and-security.nl/uploa
ds/cfsas/attachments/SPM5440%20%26%20WM0804TU%20-%20Thre
at%20modeling%20techniques%20-%20CY%20Cheung.pdf

https://go.bsimm.com/hubfs/BSIMM/BSIMM7.pdf
http://www.safety-and-security.nl/uploads/cfsas/attachments/SPM5440%20%26%20WM0804TU%20-%20Threat%20modeling%20techniques%20-%20CY%20Cheung.pdf
http://www.safety-and-security.nl/uploads/cfsas/attachments/SPM5440%20%26%20WM0804TU%20-%20Threat%20modeling%20techniques%20-%20CY%20Cheung.pdf
http://www.safety-and-security.nl/uploads/cfsas/attachments/SPM5440%20%26%20WM0804TU%20-%20Threat%20modeling%20techniques%20-%20CY%20Cheung.pdf

224 BIBLIOGRAPHY

[105] P. Torr, “Demystifying the threat modeling process,” IEEE Security &
Privacy, vol. 3, no. 5, pp. 66–70, 2005.

[106] “Owasp,” https://www.owasp.org/index.php/Main Page, (Accessed on
01/29/2018).

[107] “Octave — cyber risk and resilience management — the cert division,”
https://www.cert.org/resilience/products-services/octave/, (Accessed on
01/29/2018).

[108] P. Brereton, B. A. Kitchenham, D. Budgen, M. Turner, and M. Khalil,
“Lessons from applying the systematic literature review process within the
software engineering domain,” Journal of Systems and Software, vol. 80,
no. 4, pp. 571–583, 2007.

[109] “Core rankings portal - computing research & education,” http://www.
core.edu.au/conference-portal, (Accessed on 12/04/2017).

[110] “Excellence in research for australia — australian research council,” ht
tp://www.arc.gov.au/excellence-research-australia, (Accessed on
01/25/2018).

[111] X. Yuan, E. B. Nuakoh, I. Williams, and H. Yu, “Developing abuse
cases based on threat modeling and attack patterns,” Journal of Software
(JSW), vol. 10, no. 4, pp. 491–498, 2015.

[112] P. Wang, K.-M. Chao, C.-C. Lo, and Y.-S. Wang, “Using ontologies
to perform threat analysis and develop defensive strategies for mobile
security,” Information Technology and Management, vol. 18, no. 1, pp.
1–25, 2017.

[113] I. Williams, “Evaluating a method to develop and rank abuse cases based
on threat modeling, attack patterns and common weakness enumeration,”
Ph.D. dissertation, North Carolina Agricultural and Technical State
University, 2015.

[114] J. Taylor, Introduction to error analysis, the study of uncertainties in
physical measurements. University Science Books, 1997.

[115] F. Taylor, “Paul e. meehl: Clinical versus statistical prediction. a theoreti-
cal analysis and a review of the evidence (book review),” The International
Journal of Psycho-Analysis, vol. 37, p. 490, 1956.

[116] L. M. Osbeck and B. S. Held, Rational intuition: Philosophical roots,
scientific investigations. Cambridge University Press, 2014.

[117] D. Kahneman, Thinking, fast and slow. Macmillan, 2011.
[118] D. Kahneman and G. Klein, “Conditions for intuitive expertise: a failure

to disagree,” American psychologist, vol. 64, no. 6, p. 515, 2009.
[119] R. M. Dawes, “The robust beauty of improper linear models in decision

making,” American psychologist, vol. 34, no. 7, p. 571, 1979.
[120] C. B. Haley, R. C. Laney, and B. Nuseibeh, “Deriving security require-

ments from crosscutting threat descriptions,” in Proceedings of the Inter-
national Conference on Aspect-Oriented Software Development. ACM,
2004, pp. 112–121.

[121] Y. Chen, B. Boehm, and L. Sheppard, “Value driven security threat
modeling based on attack path analysis,” in Proceedings of the Annual
Hawaii International Conference on System Sciences (HICSS). IEEE,
2007, pp. 280a–280a.

[122] T. Hilburn, M. Ardis, G. Johnson, A. Kornecki, and N. R. Mead, “Soft-
ware assurance competency model,” Carnegie-Mellon University Pitts-

https://www.owasp.org/index.php/Main_Page
https://www.cert.org/resilience/products-services/octave/
http://www.core.edu.au/conference-portal
http://www.core.edu.au/conference-portal
http://www.arc.gov.au/excellence-research-australia
http://www.arc.gov.au/excellence-research-australia

BIBLIOGRAPHY 225

burgh, Software Engineering Institute, Tech. Rep., 2013.
[123] P. Runeson and M. Höst, “Guidelines for conducting and reporting case

study research in software engineering,” Empirical Software Engineering,
vol. 14, no. 2, p. 131, 2009.

[124] T. Abe, S. Hayashi, and M. Saeki, “Modeling security threat patterns to
derive negative scenarios,” in Proceedings of the Asia-Pacific Software
Engineering Conference (APSEC), vol. 1. IEEE, 2013, pp. 58–66.

[125] B. Kordy, S. Mauw, S. Radomirović, and P. Schweitzer, “Attack–defense
trees,” Journal of Logic and Computation, vol. 24, no. 1, pp. 55–87, 2014.

[126] K. Beckers, I. Côté, S. Faßbender, M. Heisel, and S. Hofbauer, “A
pattern-based method for establishing a cloud-specific information secu-
rity management system,” Requirements Engineering, vol. 18, no. 4, pp.
343–395, 2013.

[127] M. S. Lund, B. Solhaug, and K. Stølen, “A guided tour of the coras
method,” in Model-Driven Risk Analysis. Springer, 2011, pp. 23–43.

[128] O. El Ariss and D. Xu, “Modeling security attacks with statecharts,” in
Proceedings of the joint ACM SIGSOFT conference–QoSA and ACM SIG-
SOFT symposium–ISARCS on Quality of software architectures–QoSA
and architecting critical systems–ISARCS. ACM, 2011, pp. 123–132.

[129] C. O. Encina, E. B. Fernandez, and A. R. Monge, “Threat analysis and
misuse patterns of federated inter-cloud systems,” in Proceedings of the
European Conference on Pattern Languages of Programs. ACM, 2014,
p. 13.

[130] G. Elahi and E. Yu, “A goal oriented approach for modeling and analyzing
security trade-offs,” Conceptual Modeling-ER 2007, pp. 375–390, 2007.

[131] H. Mouratidis and P. Giorgini, “Secure tropos: a security-oriented ex-
tension of the tropos methodology,” International Journal of Software
Engineering and Knowledge Engineering, vol. 17, no. 02, pp. 285–309,
2007.

[132] G. Elahi, E. Yu, and N. Zannone, “A vulnerability-centric requirements
engineering framework: analyzing security attacks, countermeasures, and
requirements based on vulnerabilities,” Requirements Engineering, vol. 15,
no. 1, pp. 41–62, 2010.

[133] H. Mouratidis, P. Giorgini, and G. Manson, “Modelling secure multia-
gent systems,” in Proceedings of the International Joint Conference on
Autonomous Agents and Multiagent Systems. ACM, 2003, pp. 859–866.

[134] C. Haley, R. Laney, J. Moffett, and B. Nuseibeh, “Security require-
ments engineering: A framework for representation and analysis,” IEEE
Transactions on Software Engineering, vol. 34, no. 1, pp. 133–153, 2008.

[135] S. T. Halkidis, N. Tsantalis, A. Chatzigeorgiou, and G. Stephanides,
“Architectural risk analysis of software systems based on security patterns,”
IEEE Transactions on Dependable and Secure Computing, vol. 5, no. 3,
pp. 129–142, 2008.

[136] J. McDermott, “Abuse-case-based assurance arguments,” in Proceedings
of the Annual Computer Security Applications Conference (ACSAC).
IEEE, 2001, pp. 366–374.

[137] J. McDermott and C. Fox, “Using abuse case models for security re-
quirements analysis,” in Proceedings of the Annual Computer Security
Applications Conference (ACSAC). IEEE, 1999, pp. 55–64.

226 BIBLIOGRAPHY

[138] A. Van Lamsweerde et al., “Engineering requirements for system reliability
and security,” NATO Security Through Science Series D-Information
and Communication Security, vol. 9, p. 196, 2007.

[139] A. Van Lamsweerde, “Elaborating security requirements by construction
of intentional anti-models,” in Proceedings of the International Conference
on Software Engineering (ICSE). IEEE Computer Society, 2004, pp.
148–157.

[140] A. Van Lamsweerde and E. Letier, “Handling obstacles in goal-oriented
requirements engineering,” IEEE Transactions on Software Engineering,
vol. 26, no. 10, pp. 978–1005, 2000.

[141] P. Karpati, G. Sindre, and A. Opdahl, “Visualizing cyber attacks with
misuse case maps,” Requirements Engineering: Foundation for Software
Quality, pp. 262–275, 2010.

[142] P. Karpati, A. L. Opdahl, and G. Sindre, “Harm: Hacker attack repre-
sentation method,” in Proceedings of the International Conference on
Software and Data Technologies. Springer, 2010, pp. 156–175.

[143] L. Liu, E. Yu, and J. Mylopoulos, “Security and privacy requirements
analysis within a social setting,” in Proceedings of the International
Requirements Engineering Conference. IEEE, 2003, pp. 151–161.

[144] T. Li, E. Paja, J. Mylopoulos, J. Horkoff, and K. Beckers, “Security
attack analysis using attack patterns,” in Proceedings of the Interna-
tional Conference on Research Challenges in Information Science (RCIS).
IEEE, 2016, pp. 1–13.

[145] I. A. Tøndel, J. Jensen, and L. Røstad, “Combining misuse cases with
attack trees and security activity models,” in Proceedings of the Inter-
national Conference on Availability, Reliability, and Security (ARES).
IEEE, 2010, pp. 438–445.

[146] M. Jackson, Problem frames: analysing and structuring software develop-
ment problems. Addison-Wesley, 2001.

[147] “Owasp,” https://www.owasp.org/index.php/Main Page, (Accessed on
11/09/2017).

[148] P. Saitta, B. Larcom, and M. Eddington, “Trike v. 1 methodology docu-
ment [draft],” https://www.octotrike.org/papers/Trike v1 Methodology
Document-draft.pdf, 2005.

[149] N. Medvidovic and R. N. Taylor, “Software architecture: foundations,
theory, and practice,” in Proceedings of the International Conference on
Software Engineering-Volume 2. ACM/IEEE, 2010, pp. 471–472.

[150] R. A. Martin, “Common weakness enumeration,” Mitre Corporation,
2007.

[151] “Category:attack - owasp,” https://www.owasp.org/index.php/Category:
Attack, 2018, (Accessed on 20/07/2018).

[152] “Category:vulnerability - owasp,” https://www.owasp.org/index.php/Ca
tegory:Vulnerability, 2018, (Accessed on 20/07/2018).

[153] O. Sheyner and J. Wing, “Tools for generating and analyzing attack
graphs,” in International Symposium on Formal Methods for Components
and Objects. Springer, 2003, pp. 344–371.

[154] J. Siegmund, N. Siegmund, and S. Apel, “Views on internal and external
validity in empirical software engineering,” in Proceedings of the Interna-
tional Conference on Software Engineering (ICSE), vol. 1. IEEE, 2015,

https://www.owasp.org/index.php/Main_Page
https://www.octotrike.org/papers/Trike_v1_Methodology_Document-draft.pdf
https://www.octotrike.org/papers/Trike_v1_Methodology_Document-draft.pdf
https://www.owasp.org/index.php/Category:Attack
https://www.owasp.org/index.php/Category:Attack
https://www.owasp.org/index.php/Category:Vulnerability
https://www.owasp.org/index.php/Category:Vulnerability

BIBLIOGRAPHY 227

pp. 9–19.
[155] V. Mohan and L. B. Othmane, “Secdevops: Is it a marketing buzzword?-

mapping research on security in devops,” in Proceedings of the Inter-
national Conference on Availability, Reliability and Security (ARES).
IEEE, 2016, pp. 542–547.

[156] A. A. Ur Rahman and L. Williams, “Security practices in devops,” in
Proceedings of the Symposium and Bootcamp on the Science of Security.
ACM, 2016, pp. 109–111.

[157] M. Abi-Antoun and J. M. Barnes, “Analyzing security architectures,”
in Proceedings of the International Conference on Automated Software
Engineering (ASE). ACM, 2010, pp. 3–12.

[158] G. Granchelli, M. Cardarelli, P. Di Francesco, I. Malavolta, L. Iovino, and
A. Di Salle, “Towards recovering the software architecture of microservice-
based systems,” in Proceedings of the IEEE International Conference on
Software Architecture Workshops (ICSAW). IEEE, 2017, pp. 46–53.

[159] A. Sharma and R. Bawa, “A comprehensive approach for agile develop-
ment method selection and security enhancement,” International Journal
of Innovations in Engineering and Technology, vol. 6, pp. 36–44, 2016.

[160] M. Mohsin, M. U. Sardar, O. Hasan, and Z. Anwar, “Iotriskanalyzer: A
probabilistic model checking based framework for formal risk analytics of
the internet of things,” IEEE Access, 2017.

[161] I. Agadakos, C.-Y. Chen, M. Campanelli, P. Anantharaman, M. Hasan,
B. Copos, T. Lepoint, M. Locasto, G. F. Ciocarlie, and U. Lindqvist,
“Jumping the air gap: Modeling cyber-physical attack paths in the internet-
of-things,” in Proceedings of the Workshop on Cyber-Physical Systems
Security and Privacy. ACM, 2017, pp. 37–48.

[162] D. Geneiatakis, I. Kounelis, R. Neisse, I. Nai-Fovino, G. Steri, and
G. Baldini, “Security and privacy issues for an iot based smart home,” in
Proceedings of the International Convention on Information and Commu-
nication Technology, Electronics and Microelectronics (MIPRO). IEEE,
2017, pp. 1292–1297.

[163] O. Mavropoulos, H. Mouratidis, A. Fish, and E. Panaousis, “Asto: A
tool for security analysis of iot systems,” in Proceedings of the Interna-
tional Conference on Software Engineering Research, Management and
Applications (SERA). IEEE, 2017, pp. 395–400.

[164] G. Macher, H. Sporer, R. Berlach, E. Armengaud, and C. Kreiner,
“Sahara: a security-aware hazard and risk analysis method,” in Proceedings
of the Design, Automation & Test in Europe Conference & Exhibition.
EDA Consortium, 2015, pp. 621–624.

[165] S. V. E. S. S. Committee et al., “Sae j3061-cybersecurity guidebook for
cyber-physical automotive systems,” SAE-Society of Automotive Engi-
neers, 2016.

[166] ISO, “Road vehicles – Functional safety,” 2011.
[167] G. Martins, S. Bhatia, X. Koutsoukos, K. Stouffer, C. Tang, and R. Can-

dell, “Towards a systematic threat modeling approach for cyber-physical
systems,” in Proceedings of the Resilience Week (RWS). IEEE, 2015,
pp. 1–6.

[168] I. . T. Committee et al., “Analysis techniques for system reliability-
procedure for failure mode and effects analysis (fmea),” IEC 60812,

228 BIBLIOGRAPHY

2006.
[169] IEC, “Fault tree analysis (FTA) ,” 2006.
[170] C. Wohlin, P. Runeson, M. Höst, M. C. Ohlsson, B. Regnell, and

A. Wesslén, Experimentation in software engineering. Springer Sci-
ence & Business Media, 2012.

[171] D. Mellado, C. Blanco, L. E. Sánchez, and E. Fernández-Medina, “A
systematic review of security requirements engineering,” Computer Stan-
dards & Interfaces, vol. 32, no. 4, pp. 153–165, 2010.

[172] D. Mellado, E. Fernández-Medina, and M. Piattini, “A common criteria
based security requirements engineering process for the development of
secure information systems,” Computer Standards & Interfaces, vol. 29,
no. 2, pp. 244–253, 2007.

[173] P. Salini and S. Kanmani, “Survey and analysis on security requirements
engineering,” Computers & Electrical Engineering, vol. 38, no. 6, pp.
1785–1797, 2012.

[174] B. Fabian, S. Gürses, M. Heisel, T. Santen, and H. Schmidt, “A com-
parison of security requirements engineering methods,” Requirements
engineering, vol. 15, no. 1, pp. 7–40, 2010.

[175] D. Muñante, V. Chiprianov, L. Gallon, and P. Aniorté, “A review of
security requirements engineering methods with respect to risk analy-
sis and model-driven engineering,” in Proceedings of the International
Conference on Availability, Reliability, and Security (ARES). Springer,
2014, pp. 79–93.

[176] O. Daramola, Y. Pan, P. Karpati, and G. Sindre, “A comparative review of
i*-based and use case-based security modelling initiatives,” in Proceedings
of the International Conference on Research Challenges in Information
Science (RCIS). IEEE, 2012, pp. 1–12.

[177] S. Kriaa, L. Pietre-Cambacedes, M. Bouissou, and Y. Halgand, “A survey
of approaches combining safety and security for industrial control systems,”
Reliability Engineering & System Safety, vol. 139, pp. 156–178, 2015.

[178] R. Latif, H. Abbas, S. Assar, and Q. Ali, “Cloud computing risk assess-
ment: a systematic literature review,” in Future Information Technology.
Springer, 2014, pp. 285–295.

[179] Y. Cherdantseva, P. Burnap, A. Blyth, P. Eden, K. Jones, H. Soulsby,
and K. Stoddart, “A review of cyber security risk assessment methods
for scada systems,” Computers & Security, vol. 56, pp. 1–27, 2016.

[180] É. Dubois, P. Heymans, N. Mayer, and R. Matulevičius, “A systematic
approach to define the domain of information system security risk manage-
ment,” in Intentional Perspectives on Information Systems Engineering.
Springer, 2010, pp. 289–306.

[181] M. Riaz, M. Sulayman, and H. Naqvi, “Architectural decay during con-
tinuous software evolution and impact of ‘design for change’ on software
architecture,” in Proceedings of the International Conference on Advanced
Software Engineering and Its Applications. Springer, 2009, pp. 119–126.

[182] K. Tuma, R. Scandariato, M. Widman, and C. Sandberg, “Towards
security threats that matter,” in Proceedings of the Computer Security:
International Workshop on the Security of Industrial Control Systems &
of Cyber-Physical Systems (CyberICPS). Springer, 2017, pp. 47–62.

[183] G. McGraw, S. Migues, and J. West, “Building security in maturity

BIBLIOGRAPHY 229

model (BSIMM),” https://www.bsimm.com, accessed: 2017-08-25.
[184] “Empirical study: Threat modeling,” https://sites.google.com/site/empi

ricalstudythreatanalysis/, accessed: 2017-08-25.
[185] C. Wohlin, M. Höst, and K. Henningsson, “Empirical research methods

in software engineering,” in Empirical Methods and Studies in Software
Engineering. Springer, 2003, pp. 7–23.

[186] J. Carver, L. Jaccheri, S. Morasca, and F. Shull, “Issues in using students
in empirical studies in software engineering education,” in Proceedings of
the International Software Metrics Symposium. IEEE, 2003, pp. 239–249.

[187] P. Runeson, “Using students as experiment subjects–an analysis on
graduate and freshmen student data,” in Proceedings of the International
Conference on Empirical Assessment in Software Engineering, 2003, pp.
95–102.

[188] M. Höst, B. Regnell, and C. Wohlin, “Using students as subjects—a
comparative study of students and professionals in lead-time impact
assessment,” Empirical Software Engineering, vol. 5, no. 3, pp. 201–214,
2000.

[189] I. Salman, A. T. Misirli, and N. Juristo, “Are students representatives
of professionals in software engineering experiments?” in Proceedings of
the International Conference on Software Engineering-Volume 1. IEEE
Press, 2015, pp. 666–676.

[190] M. Howard and S. Lipner, The security development lifecycle. Microsoft
Press Redmond, 2006, vol. 8.

[191] K. Wuyts, R. Scandariato, and W. Joosen, “Empirical evaluation of a
privacy-focused threat modeling methodology,” Journal of Systems and
Software, vol. 96, pp. 122–138, 2014.

[192] K. Labunets, F. Massacci, F. Paci et al., “An experimental comparison
of two risk-based security methods,” in Proceedings of the International
Symposium on Empirical Software Engineering and Measurement. IEEE,
2013, pp. 163–172.

[193] A. L. Opdahl and G. Sindre, “Experimental comparison of attack trees
and misuse cases for security threat identification,” Information and
Software Technology, vol. 51, no. 5, pp. 916–932, 2009.

[194] P. Karpati, A. L. Opdahl, and G. Sindre, “Experimental comparison of
misuse case maps with misuse cases and system architecture diagrams for
eliciting security vulnerabilities and mitigations,” in Proceedings of the
International Conference on Availability, Reliability and Security (ARES).
IEEE, 2011, pp. 507–514.

[195] P. Karpati, G. Sindre, and R. Matulevicius, “Comparing misuse case and
mal-activity diagrams for modelling social engineering attacks,” Interna-
tional Journal of Secure Software Engineering (IJSSE), vol. 3, no. 2, pp.
54–73, 2012.

[196] M. H. Diallo, J. Romero-Mariona, S. E. Sim, T. A. Alspaugh, and D. J.
Richardson, “A comparative evaluation of three approaches to specifying
security requirements,” in Proceedings of the Working Conference on
Requirements Engineering: Foundation for Software Quality, 2006.

[197] G. Stoneburner, C. Hayden, and A. Feringa, “Engineering principles
for information technology security (a baseline for achieving security),”
BOOZ-ALLEN AND HAMILTON INC MCLEAN VA, Tech. Rep., 2001.

https://www.bsimm.com
https://sites.google.com/site/empiricalstudythreatanalysis/
https://sites.google.com/site/empiricalstudythreatanalysis/

230 BIBLIOGRAPHY

[198] P. H. Meland, I. A. Tøndel, and J. Jensen, “Idea: Reusability of threat
models-two approaches with an experimental evaluation,” in Proceedings
of the International Symposium on Engineering Secure Software and
Systems (ESSoS). Springer, 2010, pp. 114–122.

[199] R. Scandariato, J. Walden, and W. Joosen, “Static analysis versus penetra-
tion testing: A controlled experiment,” in Proceedings of the International
Symposium on Software Reliability Engineering (ISSRE). IEEE, 2013,
pp. 451–460.

[200] “Holisec: Holistiskt angreppssätt att förbättra datasäkerhet,” http://ww
w2.vinnova.se/sv/Resultat/Projekt/Effekta/2009-02186/HoliSec-Holis
tiskt-angreppssatt-att-forbattra-datasakerhet/, accessed: 2017-06-14.

[201] H. Yu and C.-W. Lin, “Security concerns for automotive communication
and software architecture,” in Proceedings of the Conference on Computer
Communications Workshops (INFOCOM WKSHPS). IEEE, 2016, pp.
600–603.

[202] A. Van Lamsweerde, Requirements engineering: From system goals to
UML models to software. Chichester, UK: John Wiley & Sons, 2009,
vol. 10.

[203] “E-safety vehicle intrusion protected applications,” http://www.evita-pr
oject.org/index.html, accessed: 2016-11-25.

[204] “Heavens: Healing vulnerabilities to enhance software security and safety,”
http://www.vinnova.se/sv/Resultat/Projekt/Effekta/HEAVENS-HEAl
ing-Vulnerabilities-to-ENhance-Software-Security-and-Safety/, accessed:
2016-11-25.

[205] “Connected vehicle reference implementation architecture,” http://local.
iteris.com/cvria/, accessed: 2017-8-25.

[206] T. Rauter, N. Kajtazovic, and C. Kreiner, “Asset-centric security risk
assessment of software components,” in Proceedings of the International
Workshop on MILS: Architecture and Assurance for Secure Systems, 2016.

[207] V. Saini, Q. Duan, and V. Paruchuri, “Threat modeling using attack
trees,” Journal of Computing Sciences in Colleges, vol. 23, no. 4, pp.
124–131, 2008.

[208] K. Tuma, G. Calikli, and R. Scandariato, “Threat analysis of software sys-
tems: A systematic literature review,” Journal of Systems and Software,
vol. 144, pp. 275–294, 2018.

[209] A. Karahasanovic, P. Kleberger, and M. Almgren, “Adapting threat
modeling methods for the automotive industry,” in Proceedings of the
Embedded Security in Cars Conference (ESCAR), 2017, pp. 1–10.

[210] K. Tuma and R. Scandariato, “Two architectural threat analysis tech-
niques compared,” in Proceedings of the European Conference on Software
Architecture (ECSA). Springer, 2018, pp. 347–363.

[211] T. D. Oyetoyan, D. S. Cruzes, and M. G. Jaatun, “An empirical study
on the relationship between software security skills, usage and training
needs in agile settings,” in Proceedings of the International Conference on
Availability, Reliability and Security (ARES). IEEE, 2016, pp. 548–555.

[212] K. Yskout, T. Heyman, D. Van Landuyt, L. Sion, K. Wuyts, and
W. Joosen, “Threat modeling: from infancy to maturity,” in Proceedings
of the International Conference on Software Engineering: New Ideas and
Emerging Results (ICSE-NIER), 2020, pp. 9–12.

http://www2.vinnova.se/sv/Resultat/Projekt/Effekta/2009-02186/HoliSec-Holistiskt-angreppssatt-att-forbattra-datasakerhet/
http://www2.vinnova.se/sv/Resultat/Projekt/Effekta/2009-02186/HoliSec-Holistiskt-angreppssatt-att-forbattra-datasakerhet/
http://www2.vinnova.se/sv/Resultat/Projekt/Effekta/2009-02186/HoliSec-Holistiskt-angreppssatt-att-forbattra-datasakerhet/
http://www.evita-project.org/index.html
http://www.evita-project.org/index.html
http://www.vinnova.se/sv/Resultat/Projekt/Effekta/HEAVENS-HEAling-Vulnerabilities-to-ENhance-Software-Security-and-Safety/
http://www.vinnova.se/sv/Resultat/Projekt/Effekta/HEAVENS-HEAling-Vulnerabilities-to-ENhance-Software-Security-and-Safety/
http://local.iteris.com/cvria/
http://local.iteris.com/cvria/

BIBLIOGRAPHY 231

[213] A.-A. O. Affia, R. Matulevičius, and A. Nolte, “Security risk management
in e-commerce systems: A threat-driven approach,” Baltic Journal of
Modern Computing, vol. 8, no. 2, pp. 213–240, 2020.

[214] M. Mollaeefar, A. Siena, and S. Ranise, “Multi-stakeholder cybersecurity
risk assessment for data protection,” in Proceedings of the International
Conference on Security and Cryptography (SECRYPT). Springer, 2020,
pp. 341–348.

[215] R. Jabangwe and A. Nguyen-Duc, “Siot framework: Towards an approach
for early identification of security requirements for internet-of-things
applications,” e-Informatica Software Engineering Journal, vol. 14, no. 1,
pp. 77–95, 2020.

[216] R. Stevens, D. Votipka, and E. Redmiles, “The battle for new york: A
case study of applied digital threat modeling at the enterprise level,”
in Proceedings of the Conference on Security Symposium. USENIX
Association, 2018, pp. 621–637.

[217] K. Wuyts, R. Scandariato, and W. Joosen, “Empirical evaluation of a
privacy-focused threat modeling methodology,” Journal of Systems and
Software, vol. 96, 2014.

[218] M. Balliu, D. Schoepe, and A. Sabelfeld, “We are family: Relating
information-flow trackers,” in Proceedings of the European Symposium
on Research in Computer Security (ESORICS). Springer, Cham, 2017.

[219] J. A. Goguen and J. Meseguer, “Security policies and security models.”
in S&P, 1982.

[220] K. Tuma, “Flaws in flows,” https://github.com/ktkatjat/flaws-in-flows.g
it, 2018.

[221] B. Berger, K. Sohr, and R. Koschke, “Automatically extracting threats
from extended data flow diagrams,” in Proceedings of the Engineering
Secure Software and Systems (ESSoS), 2016.

[222] A. van den Berghe, K. Yskout, W. Joosen, and R. Scandariato, “A model
for provably secure software design,” in Proceedings of the International
FME Workshop on Formal Methods in Software Engineering. IEEE
Press, 2017, pp. 3–9.

[223] J. Liu, M. D. George, K. Vikram, X. Qi, L. Waye, and A. C. Myers,
“Fabric: A platform for secure distributed computation and storage,” in
Proceedings of the Symposium on Operating Systems Principles. ACM,
2009, pp. 321–334.

[224] A. C. Myers, L. Zheng, S. Zdancewic, S. Chong, and N. Nystrom,
“Jif 3.0: Java information flow,” Jul. 2006. [Online]. Available:
http://www.cs.cornell.edu/jif

[225] K. J. Biba, “Integrity considerations for secure computer systems,”
MITRE Corp., Tech. Rep., 1977.

[226] S. Jasser, K. Tuma, R. Scandariato, and M. Riebisch, “Back to the draw-
ing board,” in Proceedings of the International Conference on Information
Systems Security and Privacy (ICISSP). Springer, 2018.

[227] G. Rasool and D. Streitferdt, “A survey on design pattern recovery
techniques,” International Journal of Computer Science Issues, vol. 8,
no. 2, 2011.

[228] M. Guerriero, D. A. Tamburri, and E. Di Nitto, “Defining, enforcing and
checking privacy policies in data-intensive applications,” in Proceedings

https://github.com/ktkatjat/flaws-in-flows.git
https://github.com/ktkatjat/flaws-in-flows.git
http://www.cs.cornell.edu/jif

232 BIBLIOGRAPHY

of the International Conference on Software Engineering for Adaptive
and Self-Managing Systems. ACM, 2018, pp. 172–182.

[229] T. D. Breaux, H. Hibshi, and A. Rao, “Eddy, a formal language for
specifying and analyzing data flow specifications for conflicting privacy
requirements,” Requirements Engineering, vol. 19, no. 3, pp. 281–307,
2014.

[230] T. Abdellatif, L. Sfaxi, R. Robbana, and Y. Lakhnech, “Automating
information flow control in component-based distributed systems,” in Pro-
ceedings of the International Symposium on Component Based Software
Engineering. ACM, 2011, pp. 73–82.

[231] G. McGraw, “Six tech trends impacting software security,” Computer,
no. 5, pp. 100–102, 2017.

[232] C. Ebert and K. Shankar, “Industry trends 2017,” IEEE Software, vol. 34,
no. 2, pp. 112–116, 2017.

[233] J. A. Wang, H. Wang, M. Guo, L. Zhou, and J. Camargo, “Ranking
attacks based on vulnerability analysis,” in Proceedings of the Hawaii
International Conference on System Sciences. IEEE, 2010, pp. 1–10.

[234] J. Garcia, D. Popescu, G. Edwards, and N. Medvidovic, “Toward a
catalogue of architectural bad smells,” in Proceedings of the International
Conference on the Quality of Software Architectures. Springer, 2009, pp.
146–162.

[235] C. Bouhours, H. Leblanc, and C. Percebois, “Bad smells in design and
design patterns,” The Journal of Object Technology, vol. 8, no. 3, pp.
43–63, 2009.

[236] D. Taibi and V. Lenarduzzi, “On the definition of microservice bad smells,”
IEEE Software, vol. 35, no. 3, pp. 56–62, 2018.

[237] R. Mo, Y. Cai, R. Kazman, L. Xiao, and Q. Feng, “Architecture anti-
patterns: Automatically detectable violations of design principles,” IEEE
Transactions on Software Engineering, 2019.

[238] T. Nafees, N. Coull, I. Ferguson, and A. Sampson, “Vulnerability anti-
patterns: a timeless way to capture poor software practices (vulner-
abilities),” in Proceedings of the Conference on Pattern Languages of
Programs. The Hillside Group, 2017, p. 23.

[239] D. Hosseini and K. Malamas, “Design flaws as security threats,” Master’s
thesis, Chalmers University of Technology and University of Gonthenburg,
http://publications.lib.chalmers.se/records/fulltext/250250/250250.pdf,
6 2017.

[240] J. C. da Silva Santos, “Toward establishing a catalog of security archi-
tecture weaknesses,” Master’s thesis, Rochester Institute of Technology,
https://scholarworks.rit.edu/theses/9004, 5 2016.

[241] I. Arce, K. Clark-Fisher, N. Daswani, J. DelGrosso, D. Dhillon, C. Kern,
T. Kohno, C. Landwehr, G. McGraw, B. Schoenfield et al., “Avoiding the
top 10 software security design flaws,” IEEE Computer Society Center
for Secure Design (CSD), Tech. Rep, 2014.

[242] D. Gonzalez, F. Alhenaki, and M. Mirakhorli, “Architectural security
weaknesses in industrial control systems (ics) an empirical study based
on disclosed software vulnerabilities,” in Proceedings of the International
Conference on Software Architecture (ICSA). IEEE, 2019, pp. 31–40.

[243] K. Tuma, D. Hosseini, K. Malamas, and R. Scandariato, “Inspection

BIBLIOGRAPHY 233

guidelines to identify security design flaws,” in Proceedings of the Interna-
tional Workshop on Designing and Measuring CyberSecurity in Software
Architecture (DeMeSSA). ACM, 2019, pp. 116–122.

[244] T. DeMarco, Structured Analysis and System Specification. Yourdon,
1979.

[245] M. D’Ambros, A. Bacchelli, and M. Lanza, “On the impact of design
flaws on software defects,” in Proceedings of the International Conference
on Quality Software. IEEE, 2010, pp. 23–31.

[246] OWASP, “OWASP Top Ten Project,” 2017. [Online]. Available:
https://www.owasp.org/index.php/Category:OWASP%5FTop%5FTe
n%5FProject

[247] SANS, “SANS Top 25 Software Errors,” 2011. [Online]. Available:
https://www.sans.org/top25-software-errors/

[248] K. Tuma, M. Balliu, and R. Scandariato, “Flaws in Flows: Unveiling
Design Flaws via Information Flow Analysis,” in Proceedings of the
International Conference on Software Architecture (ICSA). IEEE, 2019,
pp. 191–200.

[249] L. Sion, K. Yskout, D. Van Landuyt, and W. Joosen, “Solution-aware
Data Flow Diagrams for Security Threat Modelling,” in Proceedings of
the Annual ACM Symposium on Applied Computing. ACM, 2018, pp.
1425–1432.

[250] “Security Design Flaw Detection: Companion Web-Site,” Available from
Google Sites, 2020. [Online]. Available: https://sites.google.com/view/co
mpanion-web-site/

[251] L. Sion, K. Tuma, K. Yskout, R. Scandariato, and W. Joosen, “Towards
automated security design flaw detection,” in Proceedings of the Interna-
tional Workshop on Security Awareness from Design to Deployment, ser.
SEAD ’19. IEEE, 2019, pp. 49–56.

[252] J. Jürjens and P. Shabalin, “Automated verification of umlsec models for
security requirements,” in Proceedings of the International Conference
on the Unified Modeling Language. Springer, 2004, pp. 365–379.

[253] J. C. Santos, K. Tarrit, and M. Mirakhorli, “A catalog of security archi-
tecture weaknesses,” in Proceedings of the International Conference on
Software Architecture Workshops (ICSAW). IEEE, 2017, pp. 220–223.

[254] K. Alkharabsheh, Y. Crespo, E. Manso, and J. A. Taboada, “Software
design smell detection: a systematic mapping study,” Software Quality
Journal, vol. 27, no. 3, pp. 1069–1148, 2019.

[255] J. Jürjens, Secure Systems Development with UML. Springer, 2005.
[256] S. Faily, R. Scandariato, A. Shostack, L. Sion, and D. Ki-Aries, “Contex-

tualisation of Data Flow Diagrams for Security Analysis,” arXiv preprint,
no. arXiv:2006.04098, 2020, presented at GraMSec, collocated with the
Computer Security Foundations Symposium (CSF).

[257] S. Peldszus, K. Tuma, D. Strüber, J. Jürjens, and R. Scandariato, “Se-
cure Data-flow Compliance Checks between Models and Code Based on
Automated Mappings,” in Proceedings of the International Conference on
Model Driven Engineering Languages and Systems (MODELS). IEEE,
2019, pp. 23–33.

[258] Eclipse Contributors, “Eclipse Documentation – Secure Storage,” 2020.
[Online]. Available: https://help.eclipse.org/2020-06/topic/org.eclipse.p

https://www.owasp.org/index.php/Category:OWASP%5FTop%5FTen%5FProject
https://www.owasp.org/index.php/Category:OWASP%5FTop%5FTen%5FProject
https://www.sans.org/top25-software-errors/
https://sites.google.com/view/companion-web-site/
https://sites.google.com/view/companion-web-site/
https://help.eclipse.org/2020-06/topic/org.eclipse.platform.doc.user/reference/ref-securestorage-start.htm
https://help.eclipse.org/2020-06/topic/org.eclipse.platform.doc.user/reference/ref-securestorage-start.htm
https://help.eclipse.org/2020-06/topic/org.eclipse.platform.doc.user/reference/ref-securestorage-start.htm

234 BIBLIOGRAPHY

latform.doc.user/reference/ref-securestorage-start.htm
[259] T. Wolf, N. Dahyabhai, M. Sohn et al., “EGit – User Guide,” 2019.

[Online]. Available: https://wiki.eclipse.org/EGit/User%5FGuide
[260] S. Cook, C. Bock, P. Rivett, T. Rutt, E. Seidewitz, B. Selic, and

D. Tolbert, “UML Superstructure Specification,” Object Manage-
ment Group (OMG), OMG Standard formal/2017-12-05, 2017, version
2.5.1.

[261] Axway Software, BizAgi Ltd., Bruce Silver Associates, IDS Scheer, In-
ternational Business Machinesand MEGA International, Model Driven
Solutions, Object Management Group, Oracle, SAP AG, Software AG Inc.,
TIBCO, and Unisys, “Business Process Model And Notation (BPMN),”
Object Management Group (OMG), OMG Standard formal/13-12-09,
2014, version 2.0.2.

[262] S. Peldszus, G. Kulcsár, and M. Lochau, “A Solution to the Java Refactor-
ing Case Study using eMoflon,” in Transformation Tool Contest (TTC),
2015, pp. 118–122.

[263] S. Peldszus, G. Kulcsár, M. Lochau, and S. Schulze, “Incremental Co-
Evolution of Java Programs based on Bidirectional Graph Transfor-
mation,” in Proceedings of the International Conference on Principles
and Practices of Programming on the Java Platform: virtual machines,
languages, and tools (PPPJ). ACM, 2015, pp. 138–151.

[264] ——, “Continuous Detection of Design Flaws in Evolving Object-Oriented
Programs using Incremental Multi-pattern Matching,” in Proceedings of
the International Conference on Automated Software Engineering (ASE).
IEEE, 2016.

[265] S. Ruland, G. Kulcsár, E. Leblebici, S. Peldszus, and M. Lochau, “Control-
ling the Attack Surface of Object-Oriented Refactorings,” in Proceedings
of the International Conference on Fundamental Approaches to Software
Engineering (FASE). Springer, 2018, pp. 38–55.

[266] J. Knodel and D. Popescu, “A Comparison of Static Architecture Com-
pliance Checking Approaches,” in Proceedings of the Working Conference
on Software Architecture (WICSA). IEEE, 2007, pp. 12–12.

[267] D. Ganesan, T. Keuler, and Y. Nishimura, “Architecture Compliance
Checking at Run-time,” Information and Software Technology (IST),
vol. 51, no. 11, pp. 1586–1600, 2009.

[268] J. Bacon, D. Eyers, T. F.-M. Pasquier, J. Singh, I. Papagiannis, and
P. Pietzuch, “Information Flow Control for Secure Cloud Computing,”
IEEE Transactions on Network and Service Management, vol. 11, no. 1,
pp. 76–89, 2014.

[269] L. Li, T. F. Bissyandé, M. Papadakis, S. Rasthofer, A. Bartel, D. Octeau,
J. Klein, and L. Traon, “Static Analysis of Android Apps: A Systematic
Literature Review,” Information and Software Technology (IST), vol. 88,
pp. 67–95, 2017.

[270] Perl::DOC, “Perl Language Reference,” 2020. [Online]. Available:
https://perldoc.perl.org/index-language.html

[271] H. Ehrig, G. Rozenberg, and H.-J. Kreowski, Handbook of Graph Gram-
mars and Computing by Graph Transformation. World Scientific, 1999,
vol. 3.

[272] D. L. Parnas, “Software Aging,” in Software Fundamentals. Addison-

https://help.eclipse.org/2020-06/topic/org.eclipse.platform.doc.user/reference/ref-securestorage-start.htm
https://help.eclipse.org/2020-06/topic/org.eclipse.platform.doc.user/reference/ref-securestorage-start.htm
https://help.eclipse.org/2020-06/topic/org.eclipse.platform.doc.user/reference/ref-securestorage-start.htm
https://wiki.eclipse.org/EGit/User%5FGuide
https://perldoc.perl.org/index-language.html

BIBLIOGRAPHY 235

Wesley Longman Publishing Co., Inc., 2001, pp. 551–567.
[273] K. Sultan, A. En-Nouaary, and A. Hamou-Lhadj, “Catalog of Metrics

for Assessing Security Risks of Software Throughout the Software Devel-
opment Life Cycle,” in Proceedings of the International Conference on
Information Security and Assurance (ISA). IEEE, 2008, pp. 461–465.

[274] B. Alshammari, C. Fidge, and D. Corney, “Security Metrics for Object-
oriented Class Designs,” in Proceedings of the Australian Software Engi-
neering Conference (ASWEC). IEEE, 2010, pp. 55–64.

[275] S. Peldszus, K. Tuma, D. Strüber, R. Scandariato, and J. Jürjens,
“Implementation and Evaluation Data,” 2020. [Online]. Available:
https://github.com/SvenPeldszus/GRaViTY-SecDFD-Mapping

[276] S. Arzt, M. Benz, M. Miltenberger, A. Ashraf et al., “FlowDroid Release
Site,” 2020. [Online]. Available: https://github.com/secure-software-eng
ineering/FlowDroid/releases

[277] W. Klieber, L. Flynn, A. Bhosale, L. Jia, and L. Bauer, “Android Taint
Flow Analysis for App Sets,” in Proceedings of the International Workshop
on the State of the Art in Java Program Analysis (SOAP). ACM, 2014,
pp. 1–6.

[278] R. Vallee-Rai and L. J. Hendren, “Jimple: Simplifying Java Bytecode for
Analyses and Transformations,” McGill University, Tech. Rep., 1998.

[279] P. Ferrara, L. Olivieri, and F. Spoto, “Tailoring Taint Analysis to GDPR,”
in Proceedings of the Annual Privacy Forum (APF). Springer, Cham,
2018, pp. 63–76.

[280] S. Arzt, “Static Data Flow Analysis for Android Applications,” Ph.D.
dissertation, Technische Universität Darmstadt, 2017.

[281] MyBatis, “JPetStore,” 2020. [Online]. Available: http://www.mybatis.or
g/jpetstore-6/

[282] R. C. Bjork, “ATMExample,” 2020. [Online]. Available: http:
//www.math-cs.gordon.edu/local/courses/cs211/ATMExample/

[283] R. Jung, R. Heinrich, E. Taspolatoglu, and T. Pöppke, “CoCoME,” 2020.
[Online]. Available: https://github.com/cocome-community-case-study

[284] R. Heinrich, K. Rostami, and R. Reussner, “The Cocome Platform for
Collaborative Empirical Research on Information System Evolution,”
Karlsruhe Institute of Technology, Tech. Rep. 2016,2, 2016.

[285] A. Meneely, B. Smith, and L. Williams, “iTrust Electronic Health
Care System Case Study,” 2020. [Online]. Available: https:
//github.com/ncsu-csc326/iTrust

[286] J. Bürger, D. Strüber, S. Gärtner, T. Ruhroth, J. Jürjens, and K. Schnei-
der, “A Framework for Semi-automated Co-evolution of Security Knowl-
edge and System Models,” Journal of Systems and Software, vol. 139, pp.
142–160, 2018.

[287] M. Fan, L. Yuy, S. Chenz, H. Zhouy, X. Luoy, S. Li, Y. Liuz, J. Liu, and
T. Liu, “An Empirical Evaluation of GDPR Compliance Violations in
Android mHealth Apps,” arXiv preprint, no. arXiv:2008.05864, 2020.

[288] K. Hjerppe, J. Ruohonen, and V. Leppänen, “Annotation-based Static
Analysis for Personal Data Protection,” in IFIP International Summer
School on Privacy and Identity Management. Springer, 2019, pp. 343–
358.

[289] S. Peldszus, D. Strüber, and J. Jürjens, “Model-Based Security Analy-

https://github.com/SvenPeldszus/GRaViTY-SecDFD-Mapping
https://github.com/secure-software-engineering/FlowDroid/releases
https://github.com/secure-software-engineering/FlowDroid/releases
http://www.mybatis.org/jpetstore-6/
http://www.mybatis.org/jpetstore-6/
http://www.math-cs.gordon.edu/local/courses/cs211/ATMExample/
http://www.math-cs.gordon.edu/local/courses/cs211/ATMExample/
https://github.com/cocome-community-case-study
https://github.com/ncsu-csc326/iTrust
https://github.com/ncsu-csc326/iTrust

236 BIBLIOGRAPHY

sis of Feature-Oriented Software Product Lines,” in Proceedings of the
International Conference on Generative Programming (GPCE). ACM,
2018.

[290] M. Felderer, M. Büchler, M. Johns, A. D. Brucker, R. Breu, and
A. Pretschner, “Security Testing: A Survey,” in Advances in Computers.
Elsevier, 2016, vol. 101, pp. 1–51.

[291] L. M. Duarte, J. Kramer, and S. Uchitel, “Using Contexts to Extract
Models from Code,” Software and Systems Modeling (SoSyM), vol. 16,
pp. 523–557, 2017.

[292] R. F. Paige, P. J. Brooke, and J. S. Ostroff, “Metamodel-based Model
Conformance and Multiview Consistency Checking,” Transactions on
Software Engineering and Methodology (TOSEM), vol. 16, no. 3, p. 11,
2007.

[293] Z. Diskin, Y. Xiong, and K. Czarnecki, “Specifying Overlaps of Het-
erogeneous Models for Global Consistency Checking,” in Proceedings of
the International Workshop on Model-Driven Interoperability, 2010, pp.
165–179.

[294] H. König and Z. Diskin, “Efficient Consistency Checking of Interrelated
Models,” in Proceedings of the European Conference on Modelling Foun-
dations and Applications (ECMFA). Springer, Cham, 2017, pp. 161–178.

[295] A. Reder and A. Egyed, “Incremental Consistency Checking for Complex
Design Rules and Larger Model Changes,” in Proceedings of the Interna-
tional Conference on Model Driven Engineering Languages and Systems
(MODELS). Springer, 2012, pp. 202–218.

[296] M. Estañol, J. Munoz-Gama, J. Carmona, and E. Teniente, “Conformance
checking in uml artifact-centric business process models,” Software and
Systems Modeling (SoSyM), vol. 18, no. 4, pp. 2531–2555, 2019.

	Abstract
	Acknowledgement
	List of Publications
	Personal Contribution
	Introduction
	Positioning of Contributions with Respect to the Related Work
	Threat Analysis of Design Models
	Automated Security Analysis of Design Models
	Security Compliance Between Model and Code

	Research Focus
	High manual effort
	Low recall
	Disconnect between models and code

	Paper Summaries
	SLR on Threat Analysis (Paper A)
	STRIDE-per-el vs STRIDE-per-inter (Paper B)
	Towards Security Threats That Matter (Paper C)
	STRIDE-per-el vs eSTRIDE (Paper D)
	Flaws in Flows (Paper E)
	Detection of Security Design Flaws (Papers F & G)
	Structural Compliance (Paper H)
	Security Compliance (Paper I)

	Discussion
	Conclusion and Future Work

	Paper A
	Introduction
	Research methodology
	Research questions
	Search strategy
	Inclusion and exclusion criteria
	Data extraction
	Quality assurance in this study

	Results
	Overview of threat analysis techniques
	RQ1: Characteristics
	RQ2: Ease of adoption
	RQ3: Validation
	Recommendations for practitioners

	Discussion
	Potential for improvement along current trends
	Definition of Done (DoD)
	Lack of precise guidelines
	Generalization across domains
	Ease of adoption

	Threats to validity
	Related work
	Security requirements engineering
	Risk analysis and assessment

	Conclusions and future work

	Paper B
	Introduction
	Treatments
	The experiment
	Experimental object
	Participants
	Task
	Execution of the study
	Measures
	Hypothesis

	Results
	True positives, false positives, and false negatives
	RQ1: Productivity
	RQ2: Precision
	RQ3: Recall
	Exit questionnaire

	Discussion
	Threats to validity
	Related work
	Conclusion

	Paper C
	Introduction
	Running example
	An extended DFD notation
	Handling the threat explosion
	Abstraction before threat analysis
	Effort reduction during threat analysis
	Effect of abstraction

	Related work
	Discussion and limitations
	Conclusion

	Paper D
	Introduction
	The compared techniques
	Design of the Study
	Research questions
	Industrial partners
	Industrial cases
	Participants
	Task
	Execution of the study
	Qualitative measures
	Quantitative measures
	Additional quantitative measures in Org A

	Results
	RQ1: Productivity of teams
	RQ2. Discovering high-priority threats
	RQ3. Focus on activities and activity patterns
	Focus on activities
	Summary
	Timeline of activities in Org A
	Distance between activity pairs in Org A

	RQ4. Security expertise
	Outcomes
	Execution

	Discussion
	RQ1: Productivity
	RQ2: Discovering high-priority threats
	RQ3: Focus on activities and activity patterns
	RQ4. Security expertise

	Related Work
	Threat Analysis with Risk
	Empirical Investigations

	Threats to Validity
	Conclusion

	Paper E
	Introduction
	Overview of the Approach
	Security Analysis for DFDs
	A security specification language
	Semantics of SecDFD labels

	Implementation
	Evaluation
	FriendMap
	Hospital
	JPmail
	WebRTC

	Discussion and limitations
	Related work
	Conclusion

	Paper F
	Introduction
	Evaluated Security Design Flaws
	Empirical Experiments
	Results
	Improving the inspection guidelines
	Related Work
	Threats to Validity
	Conclusion

	Paper G
	Introduction
	Background
	Design Flaws and Inspection Guidelines
	Data Flow Diagram and Security Extensions

	A Curated Data Set of Design Models and Their Security Flaws
	Study Design
	The Resulting Data Set

	Automated Detection of Flaws
	DFD Model Extension
	Leveraging the Extensions for Detection
	Detecting Flaws
	Implementation

	Performance of the Automated Inspection Technique
	Research Questions
	Results

	Discussion
	Creation of the Data Set
	Automation

	Threats to Validity
	Internal Validity
	External Validity

	Related Work
	Automation of Security Design Analysis
	Security Design Flaw Catalogs
	Architectural Bad Smells and Anti-Patterns

	Conclusion

	Papers H & I
	Introduction
	Background
	Design-level model (SecDFD)
	GRaViTY Program Model (PM)
	Compliance
	Data Flow Analysis

	Enabling Compliance Checks with Automated Mapping Generation
	Corresponding Elements
	Semi-automated Mapping
	User Verification of Mappings
	Manual Mapping of Elements
	Compliance of Models and Code

	Security Compliance with Static Program Analysis
	Verification of Specified SecDFD Contracts
	Optimized Data Flow Analysis

	Tool Support
	Implementation
	Using the Tool

	Evaluation
	Evaluation of Mappings
	Evaluation of the SecDFD Contract Verification
	Evaluation of Optimized Data Flow Analysis

	Threats to Validity
	Related Work
	Conclusion and Future Work

	Bibliography

